ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Planet occurrence rates calculated for KOIs

Short name: J/ApJ/814/130
IVOA Identifier: ivo://CDS.VizieR/J/ApJ/814/130
DOI (Digital Object Identifier): 10.26093/cds/vizier.18140130
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/814/130
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2016 Mar 29 13:32:39Z
Get XML

Description


Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0-2.8R_{Earth}_) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8R_{Earth}_) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass-radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4M_{Earth}_ in F stars to 5M_{Earth}_in G and K stars to 7M_{Earth}_ in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks --either through type-I migration or radial drift of dust grains-- that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Mulders G.D.Pascucci I.Apai D.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2018 Jan 02 13:43:27Z
  • Created: 2016 Mar 29 13:32:39Z

This resource was registered on: 2016 Mar 29 13:32:39Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Solar system planets
  • Stellar spectral types
  • Multiple stars
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/814/130 Literature Reference: 2015ApJ...814..130M

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/ApJ/810/95 : Kepler pipeline S/N studies II. 2011 data (Christiansen+, 2015) ivo://CDS.VizieR/J/ApJ/810/95 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/ApJ/814/130
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/ApJ/814/130/table1 (Planet occurrence rates per KOI)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/814/130/table1?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us