Description
We study the rest-frame optical properties of 74 luminous (L_bol_=10^46.2-48.2^erg/s), 1.5<z<3.5 broad-line quasars with near-IR (JHK) slit spectroscopy. Systemic redshifts based on the peak of the [OIII]{lambda}5007 line reveal that redshift estimates from the rest-frame UV broad emission lines (mostly MgII) are intrinsically uncertain by ~200km/s (measurement errors accounted for). The overall full-width-at-half-maximum of the narrow [OIII] line is ~1000km/s on average. A significant fraction of the total [OIII] flux (~40%) is in a blueshifted wing component with a median velocity offset of ~700km/s, indicative of ionized outflows within a few kpc from the nucleus; we do not find evidence of significant [OIII] flux beyond ~10kpc in our slit spectroscopy. The [OIII] line is noticeably more asymmetric and weaker than that in typical less luminous low-z quasars. However, when matched in quasar continuum luminosity, low-z quasars have similar [OIII] profiles and strengths as these high-z systems. Therefore the exceptionally large width and blueshifted wing, and the relatively weak strength of [OIII] in high-z luminous quasars are mostly a luminosity effect rather than redshift evolution. The H{beta}-[OIII] region of these high-z quasars displays a similar spectral diversity and Eigenvector 1 correlations with anti-correlated [OIII] and optical FeII strengths, as seen in low-z quasars; but the average broad H{beta} width is larger by 25% than typical low-z quasars, indicating more massive black holes in these high-z systems. These results highlight the importance of understanding [OIII] in the general context of quasar parameter space in order to understand quasar feedback in the form of [OIII] outflows. The calibrated one-dimensional near-IR spectra are made publicly available, along with a composite spectrum.
|