ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Mass & radius of planets, moons, low mass stars

Short name: J/ApJ/834/17
IVOA Identifier: ivo://CDS.VizieR/J/ApJ/834/17
DOI (Digital Object Identifier): 10.26093/cds/vizier.18340017
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/834/17
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2017 Jun 15 13:42:28Z
Get XML

Description


Mass and radius are two of the most fundamental properties of an astronomical object. Increasingly, new planet discoveries are being announced with a measurement of one of these quantities, but not both. This has led to a growing need to forecast the missing quantity using the other, especially when predicting the detectability of certain follow-up observations. We present an unbiased forecasting model built upon a probabilistic mass-radius relation conditioned on a sample of 316 well-constrained objects. Our publicly available code, Forecaster, accounts for observational errors, hyper-parameter uncertainties, and the intrinsic dispersions observed in the calibration sample. By conditioning our model on a sample spanning dwarf planets to late-type stars, Forecaster can predict the mass (or radius) from the radius (or mass) for objects covering nine orders of magnitude in mass. Classification is naturally performed by our model, which uses four classes we label as Terran worlds, Neptunian worlds, Jovian worlds, and stars. Our classification identifies dwarf planets as merely low-mass Terrans (like the Earth) and brown dwarfs as merely high-mass Jovians (like Jupiter). We detect a transition in the mass-radius relation at 2.0_-0.6_^+0.7^M_{Earth}_, which we associate with the divide between solid, Terran worlds and Neptunian worlds. This independent analysis adds further weight to the emerging consensus that rocky super-Earths represent a narrower region of parameter space than originally thought. Effectively, then, the Earth is the super-Earth we have been looking for.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Chen J.Kipping D.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2017 Sep 01 14:41:37Z
  • Created: 2017 Jun 15 13:42:28Z

This resource was registered on: 2017 Jun 15 13:42:28Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Astronomical models
  • Solar system planets
  • Stellar radii
  • Multiple stars
  • Stellar masses
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/834/17 Literature Reference: 2017ApJ...834...17C

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
J/ApJ/825/19 : Mass-radius relationship for Rp<4 planets (Wolfgang+, 2016) ivo://CDS.VizieR/J/ApJ/825/19 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/ApJ/834/17
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/ApJ/834/17/table1 (Masses and radii used for this study)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/834/17/table1?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us