ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Brown dwarfs with spectral type later than T6

Short name: J/ApJ/842/118
IVOA Identifier: ivo://CDS.VizieR/J/ApJ/842/118
DOI (Digital Object Identifier): 10.26093/cds/vizier.18420118
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/842/118
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2018 Feb 06 14:28:08Z
Get XML

Description


The survey of the mid-infrared sky by the Wide-field Infrared Survey Explorer (WISE) led to the discovery of extremely cold, low-mass brown dwarfs, classified as Y dwarfs, which extend the T class to lower temperatures. Twenty-four Y dwarfs are known at the time of writing. Here we present improved parallaxes for four of these, determined using Spitzer images. We give new photometry for four late-type T and three Y dwarfs and new spectra of three Y dwarfs, obtained at Gemini Observatory. We also present previously unpublished photometry taken from HST, ESO, Spitzer, and WISE archives of 11 late-type T and 9 Y dwarfs. The near-infrared data are put onto the same photometric system, forming a homogeneous data set for the coolest brown dwarfs. We compare recent models to our photometric and spectroscopic data set. We confirm that nonequilibrium atmospheric chemistry is important for these objects. Nonequilibrium cloud-free models reproduce well the near-infrared spectra and mid-infrared photometry for the warmer Y dwarfs with 425<=T_eff_(K)<=450. A small amount of cloud cover may improve the model fits in the near-infrared for the Y dwarfs with 325<=T_eff_(K)<=375. Neither cloudy nor cloud-free models reproduce the near-infrared photometry for the T_eff_=250K Y dwarf WISEJ085510.83-071442.5 (W0855). We use the mid-infrared region, where most of the flux originates, to constrain our models of W0855. We find that W0855 likely has a mass of 1.5-8 Jupiter masses and an age of 0.3-6Gyr. The Y dwarfs with measured parallaxes are within 20pc of the Sun and have tangential velocities typical of the thin disk. The metallicities and ages we derive for the sample are generally solar-like. We estimate that the known Y dwarfs are 3 to 20 Jupiter-mass objects with ages of 0.6-8.5Gyr.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
Leggett S.K.Tremblin P.Esplin T.L.Luhman K.L.Morley C.V.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2018 May 16 08:16:27Z
  • Created: 2018 Feb 06 14:28:08Z

This resource was registered on: 2018 Feb 06 14:28:08Z
This resource description was last updated on: 2021 Oct 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Optical astronomy
  • Trigonometric parallax
  • Infrared photometry
  • Photometry
  • Stellar spectral types
  • Brown dwarfs
  • T dwarfs
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/842/118 Literature Reference: 2017ApJ...842..118L

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
V/144 : Near-IR spectroscopy of low-mass binaries and brown dwarfs (Mace, 2014) ivo://CDS.VizieR/V/144 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Infrared
  • Optical

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/ApJ/842/118
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/ApJ/842/118/table15 (Brown dwarfs or brown dwarf systems with spectral types T6 and later)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/842/118/table15?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us