Description
This paper presents a spectroscopic investigation of 11 HII regions in the nearby galaxy NGC 2403. The HII regions are observed with a long-slit spectrograph mounted on the 2.16m telescope at XingLong station of National Astronomical Observatories of China. For each of the HII regions, spectra are extracted at different nebular radii along the slit-coverage. Oxygen abundances are empirically estimated from the strong-line indices R23, N2O2, O3N2, and N2 for each spectrophotometric unit, with both observation- and model-based calibrations adopted into the derivation. Radial profiles of these diversely estimated abundances are drawn for each nebula. In the results, the oxygen abundances separately estimated with the prescriptions on the basis of observations and models, albeit from the same spectral index, systematically deviate from each other; at the same time, the spectral indices R23 and N2O2 are distributed with flat profiles, whereas N2 and O3N2 exhibit apparent gradients with the nebular radius. Because our study naturally samples various ionization levels, which inherently decline at larger radii within individual HII regions, the radial distributions indicate not only the robustness of R23 and N2O2 against ionization variations but also the sensitivity of N2 and O3N2 to the ionization parameter. The results in this paper provide observational corroboration of the theoretical prediction about the deviation in the empirical abundance diagnostics. Our future work is planned to investigate metal-poor HII regions with measurable Te, in an attempt to recalibrate the strong-line indices and consequently disclose the cause of the discrepancies between the empirical oxygen abundances.
|