Description
We explore the relationships between size, stellar mass, and average stellar population age (indicated by D_n_4000 indices) for a sample of ~11000 intermediate-redshift galaxies from the SHELS spectroscopic survey (Geller+ 2014, J/ApJS/213/35) augmented by high-resolution Subaru Telescope Hyper Suprime-Cam imaging. In the redshift interval 0.1<z<0.6, star-forming galaxies are on average larger than their quiescent counterparts. The mass-complete sample of ~3500M_*_>10^10^M_{sun}_ quiescent galaxies shows that the average size of a 10^11^M_{sun}_ quiescent galaxy increases by <~25% from z~0.6 to z~0.1. This growth rate is a function of stellar mass: the most massive (M_*_>10^10^M_{sun}_) galaxies grow significantly more slowly in size than quiescent systems an order of magnitude less massive that grow by 70% in the 0.1<~z<~0.3 redshift interval. For M_*_<10^11^M_{sun}_ galaxies, age and size are anticorrelated at fixed mass; more massive quiescent systems show no significant trend in size with average stellar population age. The evolution in absolute and fractional abundances of quiescent systems at intermediate redshift are also a function of galaxy stellar mass. The suite of evolutionary trends suggests that galaxies more massive than ~10^11^M_{sun}_ have mostly assembled their mass by z~0.6. Quiescent galaxies with lower stellar masses show more complex evolution that is characterized by a combination of individual quiescent galaxy size growth (through mergers) and an increase in the size of newly quenched galaxies joining the population at later times (progenitor bias). The low-mass population (M_*_~10^10^M_{sun}_) grows predominantly as a result of progenitor bias. For more massive (M_*_~5x10^10^M_{sun}_) quiescent galaxies, (predominantly minor) mergers and progenitor bias make more comparable contributions to the size growth. At intermediate redshift, quiescent size growth is mass-dependent; the most massive (M_*_>10^10^M_{sun}_) galaxies experience the least rapid increase in size from z~0.6 to z~0.1.
|