Description
The recently released 105-month Swift-Burst Alert Telescope (BAT) all-sky hard X-ray survey catalog presents an opportunity to study astrophysical objects detected in the deepest look at the entire hard X-ray (14-195keV) sky. Here we report the results of a multifrequency study of 146 blazars from this catalog, quadrupling the number compared to past studies, by utilizing recent data from the Fermi-Large Area Telescope (LAT), Swift-BAT, and archival measurements. In our {gamma}-ray analysis of ~10yr of the LAT data, 101 are found as {gamma}-ray emitters, whereas, 45 remains LAT undetected. We model the broadband spectral energy distributions with a synchrotron-inverse Compton radiative model. On average, BAT detected sources host massive black holes (M_bh_~10^9^M_{sun}_) and luminous accretion disks (L_d_~10^46^erg/s). At high redshifts (z>2), BAT blazars host more powerful jets with luminous accretion disks compared to those detected only with Fermi-LAT. We find good agreement in the black hole masses derived from the single-epoch optical spectroscopic measurements and standard accretion disk modeling approaches. Other physical properties of BAT blazars are similar to those known for Fermi-LAT detected objects.
|