Description
2I/Borisov is the first-ever observed interstellar comet (and the second detected interstellar object (ISO)). It was discovered on 2019 August 30 and has a heliocentric orbital eccentricity of ~3.35, corresponding to a hyperbolic orbit that is unbound to the Sun. Given that it is an ISO, it is of interest to compare its properties-such as composition and activity-with the comets in our solar system. This study reports low-resolution optical spectra of 2I/Borisov. The spectra were obtained by the MDM Observatory Hiltner 2.4m telescope/Ohio State Multi-Object Spectrograph (on 2019 October 31.5 and November 4.5, UT). The wavelength coverage spanned from 3700 to 9200{AA}. The dust continuum reflectance spectra of 2I/Borisov show that the spectral slope is steeper in the blue end of the spectrum (compared to the red). The spectra of 2I/Borisov clearly show CN emission at 3880{AA}, as well as C2 emission at both 4750 and 5150{AA}. Using a Haser model to covert the observed fluxes into estimates for the molecular production rates, we find Q(CN)=2.4+/-0.2x10^24^s^-1^, and Q(C_2_)=(5.5+/-0.4)x10^23^s^-1^ at the heliocentric distance of 2.145au. Our Q(CN) estimate is consistent with contemporaneous observations, and the Q(C_2_) estimate is generally below the upper limits of previous studies. We derived the ratio Q(C_2_)/Q(CN)=0.2+/-0.1, which indicates that 2I/Borisov is depleted in carbon-chain species, but is not empty. This feature is not rare for the comets in our solar system, especially in the class of Jupiter-family comets.
|