Description
We explore the environmental influences on the star formation (SF) in low-mass galaxies with stellar mass 8<=log(M_*_/M_{sun}_)<=10 at a redshift of 0.01<z<0.07. We identify the neighboring galaxies for our sample using the spectroscopically observed galaxies in the Sloan Digital Sky Survey (SDSS). Our 287 selected pair candidates have a neighboring galaxy with a stellar mass ratio of M_Neighbor_/M_Candidate_<=4 at a projected separation within d_proj_<=1500kpc and a line-of-sight kinematic separation of {Delta}v_LOS_<=300km/s. Our control galaxies are isolated from other galaxies within a projected radius of 1500kpc. All selected galaxies in our sample are spectroscopically observed by the fourth generation of SDSS/Mapping Nearby Galaxies at Apache Point Observatory (SDSS-IV/MaNGA) integral field spectroscopy survey. We radially bin our selected galaxies into three regions with a radial distance of 0<=R/R_e_<=0.5 (inner), 0.5<=R/R_e_<=1.0 (middle), and 1.0<=R/R_e_<=1.5 (outer), in which R_e_ is the effective radius at where the galaxy emit half of its light. We conclude that the SF activities in low-mass galaxies are affected by their environmental conditions when {Delta}v_LOS_<=100km/s at d_proj_<=400kpc. We use stellar-mass-weighted SF rate surface density ({Sigma}SFR/M_*_) to describe the SF strength in each radially binned region. For the pair candidates with 0.25<=M_Neighbor_/M_Candidate_<=4 at d_proj_<=100kpc and {Delta}v_LOS_<=100km/s, we observe an SF enhancement of f_{Delta}SF_=1.75+/-0.96 (f_{Delta}SF_=[({Sigma}SFR/M_*_)_Pair_-({Sigma}SFR/M_*_)_Control,mean_] /({Sigma}SFR/M_*_)_Control,mean_) in their inner regions, which decreases with increasing galactic radii.
|