ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
1366 LGRB redshifts estimates with BARSE

Short name: J/ApJ/903/33
IVOA Identifier: ivo://CDS.VizieR/J/ApJ/903/33
DOI (Digital Object Identifier): 10.26093/cds/vizier.19030033
Publisher: CDSivo://CDS[Pub. ID]
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/903/33
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2022 Feb 10 08:21:30Z
Get XML

Description


We present a catalog of probabilistic redshift estimates for 1366 individual Long-duration Gamma-ray Bursts (LGRBs) detected by the Burst And Transient Source Experiment (BATSE). This result is based on a careful selection and modeling of the population distribution of 1366 BATSE LGRBs in the five-dimensional space of redshift and the four intrinsic prompt gamma-ray emission properties: the isotropic 1024ms peak luminosity (L_iso_), the total isotropic emission (E_iso_), the spectral peak energy (E_pz_), as well as the intrinsic duration (T_90z_), while carefully taking into account the effects of sample incompleteness and the LGRB-detection mechanism of BATSE. Two fundamental plausible assumptions underlie our purely probabilistic approach: (1) LGRBs trace, either exactly or closely, the cosmic star formation rate, with a possibility of the excess rates of LGRBs in the nearby universe, and (2) the joint four-dimensional distribution of the aforementioned prompt gamma-ray emission properties is well described by a multivariate log-normal distribution. Our modeling approach enables us to constrain the redshifts of individual BATSE LGRBs to within 0.36 and 0.96 average uncertainty ranges at 50% and 90% confidence levels, respectively. Our redshift predictions are completely at odds with the previous redshift estimates of BATSE LGRBs that were computed via the proposed phenomenological high-energy relations, specifically, the apparently strong correlation of LGRBs' peak luminosity with the spectral peak energy, lightcurve variability, and spectral lag. The observed discrepancies between our predictions and the previous works can be explained by the strong influence of detector threshold and sample incompleteness in shaping these phenomenologically proposed high-energy correlations in the literature. Finally, we also discuss the potential effects of an excess cosmic rate of LGRBs at low redshifts and the possibility of a luminosity evolution of LGRBs on our results.

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: CDSivo://CDS[Pub. ID]

Creators:
OsborneOsborne J.A.Shahmoradi A.Nemiroff R.J.

Contact Information:
X CDS support team
Email: cds-question at unistra.fr
Address: CDS
Observatoire de Strasbourg
11 rue de l'Universite
F-67000 Strasbourg
France

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service provides only public data.
Relevant dates for this Resource:
  • Updated: 2022 Mar 14 07:41:06Z
  • Created: 2022 Feb 10 08:21:30Z

This resource was registered on: 2022 Feb 10 08:21:30Z
This resource description was last updated on: 2022 Mar 15 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Gamma-ray astronomy
  • Gamma-ray bursts
  • Redshifted
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/ApJ/903/33 Literature Reference: 2020ApJ...903...33O

Related Resources:

Other Related Resources
TAP VizieR generic service(IsServedBy) ivo://CDS.VizieR/TAP [Res. ID]
Conesearch service(IsServedBy)
IX/20 : The Fourth BATSE Burst Revised Catalog (Paciesas+ 1999) ivo://CDS.VizieR/IX/20 [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Wavebands covered:

  • Gamma-ray

Rights and Usage Information

This section describes the rights and usage information for this data.

Rights:

Available Service Interfaces

Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: http://vizier.cds.unistra.fr/viz-bin/votable?-source=J/ApJ/903/33
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • http://tapvizier.cds.unistra.fr/TAPVizieR/tap
Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Description:
Cone search capability for table J/ApJ/903/33/table2 (BATSE 1366 LGRB redshift estimates)
Available endpoints for the standard interface:
  • http://vizier.cds.unistra.fr/viz-bin/conesearch/J/ApJ/903/33/table2?
Maximum search radius accepted: 180.0 degrees
Maximum number of matching records returned: 50000
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us