Description
New improved calculations are reported for transition probabilities and electron impact excitation collision strengths for the astrophysically important lines in SII. The collision strengths have been calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method with term-dependent non-orthogonal orbitals is employed for an accurate representation of the target wave functions. The close-coupling expansion includes 70 bound levels of SII covering all possible terms of the ground 3s^2^3p^3^ and singly excited 3s3p^4^, 3s^2^3p^2^3d, 3s^2^3p^2^4s, and 3s^2^3p^2^4p configurations. The present calculations are more extensive than previous ones, leading to a total 2415 transitions between fine-structure levels. The effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities and these are tabulated for all fine-structure transitions at electron temperatures in the range from 5000 to 100000K. The present results are compared with a variety of other close-coupling calculations and available experimental data. There is an overall good agreement with the recent 18-state calculations by Ramsbottom, Bell, & Stafford and with the 19-state calculations by Tayal for the most part, but some significant differences are also noted for some transitions.
|