ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Variability in UV line emission of F-M stars

Short name: J/ApJS/211/9
IVOA Identifier: ivo://CDS.VizieR/J/ApJS/211/9
DOI (Digital Object Identifier): 10.26093/cds/vizier.22110009
Publisher: CDS[+][Pub. ID]
More Info: http://cdsarc.unistra.fr/cgi-bin/cat/J/ApJS/211/9
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2014 Apr 16 14:22:56Z
Get XML

Description


Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two enclosing strong lines from species known to inhabit hot Jupiter atmospheres, C.II {lambda}{lambda}1334, 1335 and SiIII{lambda}1206; one enclosing SiIV {lambda}{lambda}1393, 1402; and 36.5{AA} of interspersed continuum. For each star/band combination, we generated 60s cadence lightcurves from archival Hubble Space Telescope Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph time-tagged photon data. Within these lightcurves, we characterized flares and stochastic fluctuations as separate forms of variability. Flares: we used a cross-correlation approach to detect 116 flares. These events occur in the time-series an average of once per 2.5hr, over 50% last 4 minutes or less, and most produce the strongest response in SiIV. If the flare occurred during a transit measurement integrated for 60 minutes, 90/116 would destroy the signal of an Earth, 27/116 Neptune, and 7/116 Jupiter, with the upward bias in flux ranging from 1% to 109% of quiescent levels. Fluctuations: photon noise and underlying stellar fluctuations produce scatter in the quiescent data. We model the stellar fluctuations as Gaussian white noise with standard deviation {sigma}_x_. Maximum likelihood values of {sigma}_x_ range from 1% to 41% for 60s measurements. These values suggest that many cool stars will only permit a transit detection to high confidence in ultraviolet resonance lines if the radius of the occulting disk is >~1R_J_. However, for some M dwarfs this limit can be as low as several R_{oplus}_.

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

[+] Rights and Usage Information

This section describes the rights and usage information for this data.

Available Service Interfaces

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us