Description
We first presented an isochrone data base that can be widely used for stellar population synthesis studies and colour-magnitude diagram (CMD) fitting. The data base consists of the isochrones of both single-star and binary-star simple stellar populations (ss-SSPs and bs-SSPs). The ranges for the age and metallicity of populations are 0-15Gyr and 0.0001-0.03, respectively. All data are available for populations with two widely used initial mass functions (IMFs), that is, Salpeter IMF and Chabrier IMF. The uncertainty caused by the data base (about 0.81 per cent) is designed to be smaller than those caused by the Hurley code and widely used stellar spectra libraries (e.g. BaSeL 3.1) when it is used for stellar population synthesis. Based on the isochrone data base, we then built a rapid stellar population synthesis (RPS) model and calculated the high-resolution (0.03nm) integrated spectral energy distributions, Lick indices and colour indices for bs-SSPs and ss-SSPs. In particular, we calculated the UBVRIJHKLM colours, ugriz colours and some composite colours that consist of magnitudes on different systems. These colours are useful for disentangling the well-known stellar age-metallicity degeneracy according to our previous work. As an example for applying the isochrone data base for CMD fitting, we fitted the CMDs of two star clusters (M67 and NGC1868) and obtained their distance moduli, colour excesses, stellar metallicities and ages. The results showed that the isochrones of bs-SSPs are closer to those of real star clusters. It suggests that we should take the effects of binary interactions into account in stellar population synthesis. We also discussed on the limitations of the application of the isochrone data base and the results of the RPS model.
|