Description
We describe seven exoplanets transiting stars of brightness V=10.1-12.4. WASP-130b is a 'warm Jupiter' having an orbital period of 11.6d around a metal-rich G6 star. Its mass and radius (1.23+/-0.04M_Jup_ and 0.89+/-0.03R_Jup_) support the trend that warm Jupiters have smaller radii than hot Jupiters. WASP-131b is a bloated Saturn-mass planet (0.27M_Jup_ and 1.22R_Jup_). Its large scaleheight and bright (V=10.1) host star make it a good target for atmospheric characterization. WASP-132b (0.41M_Jup_ and 0.87R_Jup_) is among the least irradiated and coolest of WASP planets, having a 7.1-d orbit around a K4 star. WASP-139b is a 'super-Neptune' akin to HATS-7b and HATS-8b, being the lowest mass planet yet found by WASP (0.12M_Jup_ and 0.80R_Jup_). The metal-rich K0 host star appears to be anomalously dense, akin to HAT-P-11. WASP-140b is a 2.4M_Jup_ planet in an eccentric (e=0.047+/-0.004) 2.2d orbit. The planet's radius is large (1.4R_Jup_), but uncertain owing to the grazing transit (b=0.93). The 10.4d rotation period of the K0 host star suggests a young age, and the time-scale for tidal circularization is likely to be the lowest of all known eccentric hot Jupiters. WASP-141b (2.7M_Jup_, 1.2R_Jup_ and P=3.3d) and WASP-142b (0.84M_Jup_, 1.53R_Jup_ and P=2.1d) are typical hot Jupiters orbiting metal-rich F stars. We show that the period distribution within the hot-Jupiter bulge does not depend on the metallicity of the host star.
|