Description
This paper presents optical (ugriH{alpha})-infrared (JHKs, 3.6-8.0um) photometry and Gaia astrometry of 55 Classical T-Tauri stars (CTTS) in the star-forming region Sh 2-012 and its central cluster NGC 6383. The sample was identified based on photometric H{alpha} emission linewidths, and has a median age of 2.8+/-1.6Myr, with a mass range between 0.3 and 1M_{sun}_. 94 per cent of CTTS with near-infrared cross-matches fall on the near-infrared T-Tauri locus, with all stars having mid-infrared photometry exhibiting evidence for accreting circumstellar discs. CTTS are found concentrated around the central cluster NGC 6383, and towards the bright rims located at the edges of Sh 2-012. Stars across the region have similar ages, suggestive of a single burst of star formation. Mass accretion rates dMacc/dt) estimated via H{alpha} and u-band line intensities show a scatter (0.3dex) similar to spectroscopic studies, indicating the suitability of H{alpha} photometry to estimate dMacc/dt. Examining the variation of dMacc/dt with stellar mass (M*), we find a smaller intercept in the (dMacc/dt)-M* relation than oft-quoted in the literature, providing evidence to discriminate between competing theories of protoplanetary disc evolution.
|