Description
In order to study the high-transition dense-gas tracers and their relationships to the star formation of the inner ~2kpc circumnuclear region of NGC 253, we present HCN J=4-3 and HCO^+^ J=4-3 maps obtained with the James Clerk Maxwell Telescope(JCMT). With the spatially resolved data, we compute the concentration indices r90/r50 for the different tracers. HCN and HCO^+^ 4-3 emission features tend to be centrally concentrated, which is in contrast to the shallower distribution of CO 1-0 and the stellar component. The dense-gas fraction (fdense, traced by the velocity-integrated-intensity ratios of HCN/CO and HCO^+^/CO) and the ratio R31 (CO 3-2/1-0) decline towards larger galactocentric distances, but increase with higher SFR surface density. The radial variation and the large scatter of fdense and R31 imply distinct physical conditions in different regions of the galactic disc. The relationships of fdense versus Sigma_stellar, and SFE_dense versus Sigma_stellar are explored. SFE_dense increases with higher Sigma_stellar in this galaxy, which is inconsistent with previous work that used HCN 1-0 data. This implies that existing stellar components might have different effects on the high-J HCN and HCO+ than their low-J emission. We also find that SFE_dense seems to be decreasing with higher f_dense which is consistent with previous works, and it suggests that the ability of the dense gas to form stars diminishes when the average density of the gas increases. This is expected in a scenario where only the regions with high-density contrast collapse and form stars.
|