Description
Recently, a new cylindrical-shaped stream of stars, up to 700pc long, was discovered hiding in the Galactic disk using kinematic data enabled by the Gaia mission. This curious stream of stars, dubbed the Pisces-Eridanus stream, was initially thought to be as old as 1Gyr, yet its stars shared a rotation period distribution consistent with the 120-Myr-old Pleiades cluster. In this work, we explore the detailed chemical nature of this stellar stream. We carried out high-resolution spectroscopic follow-up of 42 Pisces-Eridanus stream stars using McDonald Observatory, and combined these data with information for 40 members observed with the low-resolution LAMOST spectroscopic survey. Together, these data enabled us to measure the abundance distribution of light/odd-Z (Li, C, Na, Al, Sc, V), {alpha} (Mg, Si, Ca, Ti), Fe-peak (Cr, Mn, Fe, Co, Ni, Zn), and neutron capture (Sr, Y, Zr, Ba, La, Nd, Eu) elements across the Pisces-Eridanus stream. We find that the stream is (1) near solar metallicity with [Fe/H] = -0.03 dex and (2) has a metallicity spread of 0.07 dex (or 0.04 dex when removing outliers). We also find that (3) the abundance of Li indicates that Pisces-Eridanus is ~120Myr old, consistent with the gyrochronology result. We find that (4) the stream has a [X/Fe] abundance spreads of 0.06<{sigma}_[X/Fe]_<0.20dex in most elements, and (5) no significant abundance gradients across its major axis except a potentially weak gradient in [Si/Fe]. These results together show that the Pisces-Eridanus stream is a uniquely close, young, chemically interesting laboratory for testing our understanding of star and planet formation.
|