Description
For a number of years there has been a great demand for a high-density catalog of accurate stellar positions and proper motions that maintains a consistent system of reference over the entire sky. The Smithsonian Astrophysical Observatory Star Catalog (SAO; SAO Staff 1966) has partially met those requirements, but its positions brought to current epochs now contain errors on the order of 1 second of arc, plus the proper motions in the SAO differ systematically with one another depending on their source catalogs. With the completion of the Second Cape Photographic Catalogue (CPC2; de Vegt et al. 1989), a photographic survey comparable in density to the AGK3 (Dieckvoss 1975) was finally available for the southern hemisphere. These two catalogs were used as a base and matched against the AGK2 (Schorr & Kohlschuetter 1951-58), Yale photographic zones (Yale Trans., Vols. 11-32), First Cape Photographic Catalogue (CPC1; Jackson & Stoy 1954, 55, 58; Stoy 1966), Sydney Southern Star Catalogue (King & Lomb 1983), Sydney Zone Catalogue -48 to -54 degrees (Eichhorn et al. 1983), 124 meridian circle catalogs, and catalogs of recent epochs, such as the Carlsberg Meridian Catalogue, La Palma (CAMC), USNO Zodiacal Zone Catalog (Douglass & Harrington 1990), and the Perth 83 Catalogue (Harwood [1990]) to obtain as many input positions as possible. All positions were then reduced to the system of the FK4 (Fricke & Kopff 1963) using a combination of the FK4, the FK4 Supplement as improved by H. Schwan of the Astronomisches Rechen-Institut in Heidelberg, and the International Reference Stars (IRS; Corbin 1991), then combined with the CPC2 and AGK3. The total number of input positions from which the ACRS was formed is 1,643,783. The original catalog is divided into two parts. Part 1 contains the stars having better observational histories and, therefore, more reliable positions and proper motions. This part constitutes 78 percent of the catalog; the mean errors of the proper motions are +/-0.47 arcsec per century and +/-0.46 arcsec per century in right ascension and declination, respectively. The stars in Part 2 have poor observational histories and consist mostly of objects for which only two catalog positions in one or both coordinates were available for computing the proper motions. Where accuracy is the primary consideration, only the stars in Part 1 should be used, while if the highest possible density is desired, the two parts should be combined. The ACRS was compiled at the U. S. Naval Observatory with the intention that it be used for new reductions of the Astrographic Catalogue (AC) plates. These plates are small in area (2 x 2 deg) and the IRS is not dense enough. Whereas the ACRS was compiled using the same techniques developed to produce the IRS, it became clear as the work progressed that the ACRS would have applications far beyond its original purpose. With accurate positions and proper motions rigorously reduced to both the FK4 and FK5 (Fricke et al. 1988) systems, it does more than simply replace the SAO. Rather, it provides the uniform system of reference stars that has been needed for many years by those who require densities greater than the IRS and with high accuracy over a wide range of epochs. It is intended that, as additional observations become available, stars will be migrated from Part 2 to Part 1, with the hope that eventually the ACRS will be complete in one part. Additional details concerning the compilation and properties of the ACRS can be found in Corbin & Urban (1989) except that the star counts and errors given here supersede the ones given in 1989. The HEASARC revised this database table in August, 2005, in order to add Galactic coordinates. This is a service provided by NASA HEASARC .
|