ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
LOFAR Radio Catalog of Herschel-ATLAS North Galactic Pole Field

Short name: LOFHATLAS
IVOA Identifier: ivo://nasa.heasarc/lofhatlasPublisher: NASA/GSFC HEASARC[+][Pub. ID]
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/lofhatlas.html
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2025 Apr 25 00:00:00Z
Get XML

Description


This table contains some of the results of Low-Frequency Array (LOFAR) High-Band Array (HBA) observations of the Herschel-ATLAS North Galactic Pole (NGP) survey area. The survey the authors carried out, consisting of four pointings covering around 142 deg<sup>2</sup> of sky in the frequency range 126-173 MHz, does not provide uniform noise coverage but otherwise is representative of the quality of data to be expected in the planned LOFAR wide-area surveys, and has been reduced using recently developed 'facet calibration' methods at a resolution approaching the full resolution of the data sets (~10 x 6 arcsec) and an rms off-source noise that ranges from 100 µJy beam<sup>-1</sup> in the center of the best fields to around 2 mJy/beam at the furthest extent of their imaging. In the reference paper, the authors describe the imaging, cataloguing and source identification processes, and present some initial science results based on a 5-sigma source catalog. These include (i) an initial look at the radio/far-infrared correlation at 150 MHz, showing that many Herschel sources are not yet detected by LOFAR; (ii) number counts at 150 MHz, including, for the first time, observational constraints on the numbers of star-forming galaxies; (iii) the 150-MHz luminosity functions for active and star-forming galaxies, which agree well with determinations at higher frequencies at low redshift, and show strong redshift evolution of the star-forming population; and (iv) some discussion of the implications of these observations for studies of radio galaxy life cycles. The NGP field was observed in four separate pointings, chosen to maximize the area of sky covered, with the LOFAR HBA as part of the Surveys Key Science project. These observations used the HBA_DUAL_INNER mode, meaning that the station beams of core and remote stations roughly matched each other and giving the widest possible field of view. The first observation, which was made early on in LOFAR operations, was of slightly longer duration (~10 h) than the others (~8 h). International stations were included in some of the observations in 2014 but were not used in any of the authors' analysis, which uses only the Dutch array. The author were interested in imaging in several separate frequency ranges (which are referred to hereafter as 'spectral windows'), since they wanted to be able to measure in-band spectral indices for detected sources. In addition, facet calibrating in different spectral windows could be done in parallel, speeding the processing up considerably. Accordingly, they chose to facet calibrate with six spectral windows, each made up of four bands and thus containing about 8 MHz of bandwidth: <pre> Spectral Nominal Frequency Frequency Range Window (MHz) (MHz) 1 130 126 - 134 2 138 134 - 142 3 146 142 - 150 4 154 150 - 158 5 161 158 - 166 6 169 166 - 173 </pre> The final source catalog was made by combining the four per-field catalogs. Ideally, the authors would have combined the images of each field and done source finding on a mosaicked image, but this proved computationally intractable given the very large image cubes that result from having six spectral windows. They therefore merged the catalogs by identifying the areas of sky where there is overlap between the fields and choosing those sources which are measured from the region with the best rms values. This should ensure that there are no duplicate sources in the final catalog. The final master catalogue contains 17,132 sources and is derived from images covering a total of 142.7 deg<sup>2</sup> of independently imaged sky, with widely varying sensitivity. Total HBA-band (150-MHz) flux densities of catalogued sources detected using the PYBDSM software and a 5-sigma detection threshold range from a few hundred µJy to 20 Jy, with a median of 10 mJy. The authors examined all sources in the initial master catalog for associations with sources in other surveys, for rejection as artifacts, and for optical identifications, as described in detail in Section 3.5 of the reference paper. The final outcomes of this process were (a) an associated, artifact-free catalog of 15,292 sources, all of which the authors believe to be real physical objects which is contained in the present HEASARC table, and (b) a catalog of 6,227 objects with plausible, single optical identifications with Sloan Digital Sky Survey (SDSS) sources, representing an identification fraction of just over 40 per cent. (Note that around 50 sources with more than one equally plausible optical identification are excluded from this catalog; further observation would be required to disambiguate these sources). This table was created by the HEASARC in April 2018, based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/462/1910">CDS Catalog J/MNRAS/462/1910</a> file tablea1.dat. This is a service provided by NASA HEASARC .

More About this Resource

[+] About the Resource Providers

This section describes who is responsible for this resource

[+] Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

[+] What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

[+] Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Available Service Interfaces

[+] Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

[+] Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

[+] Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.



Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us