ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
LISA Pathfinder Archive Data Summary

Short name: LPFFILES
IVOA Identifier: ivo://nasa.heasarc/lpffilesPublisher: NASA/GSFC HEASARCivo://nasa.heasarc/ASD[Pub. ID]
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/lpffiles.html
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2024 Jun 21 00:00:00Z
Get XML

Description


This table provides an index for a time ordered set of files containing the telemetry from the the DRS system on the LISA Pathfinder mission. It gives the time in a variety of spacecraft modes for each file. Note that not all modes were explored during the LISA Pathfinder mission. The Disturbance Reduction System (DRS) was an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft. LISA Pathfinder (LPF) launched from Kourou, French Guiana, on December 3, 2015. LPF successfully demonstrated the disturbance-free motion of two test masses at a noise level acceptable for a future gravitational wave (GW) observatory. Designated ST7, DRS is the NASA contribution to LPF with the goal of operating disturbance reduction technology in space applicable to GW missions and other future missions with challenging stability requirements. DRS flew two clusters of four, low-noise, colloid micro-thrusters (eight total) and a computer which implemented drag-free control laws. At specific times during the LPF mission, DRS operated as alternative to the ESA provided thrusters and control laws. The location of the test masses relative to the spacecraft and the attitude of the spacecraft were measured by ESA subsystems and provided to DRS as its sensors. The displacement and attitude of the spacecraft relative to the two test masses was controlled using the colloid thrusters and electrostatic forces on the TMs provided by the LPF systems. The key requirements for DRS were to show that the thrust noise was less than 0.1 micro-N, and the spacecraft position noise was less than 10nm/sqrt( Hz) in the measurement frequency band of 1 to 30 micro-Hz. ST7 also recorded the relative acceleration noise (delta-g) between the two test masses, a key metric for the GW application, but had no requirement did not optimize the delta-g performance because this is primarily dependent on the (ESA) inertial sensor. ST7 executed a primary mission in which the thrust noise of the thrusters and the performance of the drag free control were measured and a short extended mission which was used to optimize the performance and expand the operating range of the thrusters and control laws. This table was created by the HEASARC in February 2018 based on data files provided by Jacob Slutsky and Leonid Petrov, which were reformatted from the base files at the LISA Pathfinder archive at ESA. The reformatted data files are available at <a href="https://heasarc.gsfc.nasa.gov/FTP/lpf/data/fits/">https://heasarc.gsfc.nasa.gov/FTP/lpf/data/fits/</a> with summaries of the instrument mode intervals available in summary files in <a href="https://heasarc.gsfc.nasa.gov/FTP/lpf/data/summ/">https://heasarc.gsfc.nasa.gov/FTP/lpf/data/summ/</a>. This is a service provided by NASA HEASARC .

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: NASA/GSFC HEASARCivo://nasa.heasarc/ASD[Pub. ID]

Creator: HEASARC Contributor:

Contact Information:
X NASA/GSFC HEASARC help desk
Email:

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service apparently provides only public data
Relevant dates for this Resource:
  • Representative: 2024 Jun 21

This resource was registered on: 2024 Jun 21 00:00:00Z
This resource description was last updated on: 2024 Jun 21 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Archive
Subject keywords:
  • Observation
This service provides data from:
  • facility: LPF
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/lpffiles.html Literature Reference:

Related Resources:

Services that provide access to data in this resource:
HEASARC TAP ivo://nasa.heasarc/services/xamin [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Reference Coordinate System: UTC-ICRS-TOPOXXivo://STClib/CoordSys#UTC-ICRS-TOPO[Res. ID]

Sky Coverage: Regions covered:

  • All-sky: The data from this resource is distributed over the entire sky.
Typical Size Scale (Region of Regard): , 0.0166666666666667 deg

Wavebands covered:

  • Optical

Available Service Interfaces

Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • https://heasarc.gsfc.nasa.gov/xamin/vo/tap
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/getvotable.pl?name=lpffiles
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us