ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
NGC 1600 Chandra X-Ray Discrete Source Catalog

Short name: NGC1600CXO
IVOA Identifier: ivo://nasa.heasarc/ngc1600cxoPublisher: NASA/GSFC HEASARCivo://nasa.heasarc/ASD[Pub. ID]
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/ngc1600cxo.html
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2024 Sep 27 00:00:00Z
Get XML

Description


The authors observed the X-ray-bright E3 galaxy NGC 1600 and nearby members of the NGC 1600 group with the Chandra X-Ray Observatory ACIS-S3 to study their X-ray properties. NGC 1600 is the brightest member of the NGC 1600 group; NGC 1601 (1.6 arcminutes away) and NGC 1603 (2.5 arcminutes away) are the two nearest galaxies, both of which are non-interacting members. The authors adopted the 2MASS Point Source Catalog position of J2000.0 RA = 04<sup>h</sup> 31<sup>m</sup> 39.87<sup>s</sup>, Dec = -05<sup>o</sup> 05' 10.5" as the location of the center of the NGC 1600 galaxy. Unresolved emission dominates the Chandra observation; however, some of the emission is resolved into 71 sources, most of which are low-mass X-ray binaries associated with NGC 1600. Twenty-one of the sources have L<sub>X</sub> > 2 x 10<sup>39</sup> ergs/s (0.3-10.0 keV; assuming they are at the distance of NGC 1600 of 59.98 Mpc), marking them as ultraluminous X-ray point source (ULX) candidates. NGC 1600 may have the largest number of ULX candidates in an early-type galaxy to date; however, cosmic variance in the number of background active galactic nuclei cannot be ruled out. The spectrum and luminosity function (LF) of the resolved sources are more consistent with sources found in other early-type galaxies than with sources found in star-forming regions of galaxies. The source LF and the spectrum of the unresolved emission both indicate that there are a large number of unresolved point sources. The authors propose that these sources are associated with globular clusters (GCs) and that NGC 1600 has a large GC specific frequency. Observations of the GC population in NGC 1600 would be very useful for testing this prediction. NGC 1600 was observed in two intervals on 2002 September 18-19 (ObsID 4283) and 2002 September 20 (ObsID 4371) with live exposures of 26,783 and 26,752 s, respectively. The first observation showed clear evidence of a major background "flare" in the first 20% of the observation. The second observation had some small fluctuations greater than 20% from the mean rate. After these were filtered, observations 4283 and 4371 had flare-free exposure times of 21,562 and 23,616 s, respectively. This table lists all 71 discrete sources detected by wavdetect over the 0.3-6 keV energy range in the combination of the two observations. The first 3 sources (source numbers 1, 2 and 3) are clearly extended according to the authors. The authors expect 11 +/- 2 foreground/background sources to be present based on the source counts in Brandt et al. (2000, AJ, 119, 2349) and Mushotzky et al. (2000, Nature, 404, 459). The authors determined the observed X-ray hardness ratios for the sources, using the same techniques that they have used previously. They define three hardness ratios as H21 = (M-S)/(M+S), H31 = (H-S)/(H+S), and H32 = (H-M)/(H+M), where S,M, and H are the total counts in the soft (0.3-1 keV), medium (1-2 keV) and hard (2-6 keV) respectively. From their previous definitions, they have reduced the hard band from 2-10 to 2-6 keV: since the 6-10 keV range is dominated by background photons for most sources, this should increase the S/N of the hardness ratio techniques. The hardness ratios measure observed counts, which are affected by Galactic absorption and quantum efficiency (QE) degradation in the Chandra ACIS detectors. In order to compare with other galaxies, it is useful to correct the hardness ratios for these two soft X-ray absorption effects. Therefore, the authors have calculated the intrinsic hardness ratios, denoted by a superscript 0, using a correction factor in each band appropriate to the best-fit spectrum of the resolved sources, and these are what are quoted in this table. This table was created by the HEASARC in May 2018 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/617/262/">CDS Catalog J/ApJ/617/262/</a> file table1.dat, the list of detected discrete X-ray sources in the Chandra observation of the NGC 1600 group. This is a service provided by NASA HEASARC .

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: NASA/GSFC HEASARCivo://nasa.heasarc/ASD[Pub. ID]

Creator: Sivakoff et al. Contributor:

Contact Information:
X NASA/GSFC HEASARC help desk
Email:

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service apparently provides only public data
Relevant dates for this Resource:
  • Representative: 2024 Sep 27

This resource was registered on: 2024 Sep 27 00:00:00Z
This resource description was last updated on: 2024 Sep 27 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • Survey Source
This service provides data from:
  • facility: CHANDRA
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/ngc1600cxo.html Literature Reference: 2004ApJ...617..262S

Related Resources:

Services that provide access to data in this resource:
HEASARC TAP ivo://nasa.heasarc/services/xamin [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Reference Coordinate System: UTC-ICRS-TOPOXXivo://STClib/CoordSys#UTC-ICRS-TOPO[Res. ID]

Sky Coverage: Regions covered:

  • All-sky: The data from this resource is distributed over the entire sky.
Typical Size Scale (Region of Regard): , 0.0166666666666667 deg

Wavebands covered:

  • X-ray

Available Service Interfaces

Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • https://heasarc.gsfc.nasa.gov/xamin/vo/cone?showoffsets&table=ngc1600cxo&
Maximum search radius accepted: 180 degrees
Maximum number of matching records returned: 99999
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • https://heasarc.gsfc.nasa.gov/xamin/vo/tap
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/getvotable.pl?name=ngc1600cxo
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us