Description
With the goal of improving the member census of the NGC 2264 star-forming region and studying the origin of X-ray activity in young pre-main sequence (PMS) stars, the authors analyzed a deep, 100 ks long, Chandra ACIS observation covering a 17' x 17' field in the 3 Myr old star-forming region (SFR) NGC 2264. The preferential detection in X-rays of low-mass PMS stars gives strong indications of their membership. The authors study X-ray activity as a function of stellar and circumstellar characteristics by correlating the X-ray luminosities, temperatures, and absorptions with optical and near-infrared (NIR) data from the literature. The authors detected 420 X-ray point sources in the observation above a 4.6-sigma significance threshold using the PWDetect software. Optical and NIR counterparts were found in the literature for 85% of the sources. The authors argue that more than 90% of these counterparts are NGC 2264 members, thereby significantly increasing the known low-mass cluster population by about 100 objects. Among the sources without counterpart, about 50% are probably associated with members, several of which are expected to be previously unknown protostellar objects. With regard to activity, several previous findings are confirmed: X-ray luminosity is related to stellar mass, although with a large scatter; L<sub>x</sub>/L<sub>bol</sub> is close to, but almost invariably below, the saturation level of 10<sup>-3</sup>, especially when considering the quiescent X-ray emission. A comparison between classical T Tauri stars (CTTS) and weak-line T Tauri stars (WTTS) shows several differences: CTTS have, at any given mass, activity levels that are both lower and more scattered than WTTS; emission from CTTS may also be more time variable and is on average slightly harder than for WTTS. However, there is evidence in some CTTS of extremely cool, ~0.1 - 0.2 keV, plasma which the authors speculate is due to plasma heated by accretion shocks. The X-ray spectra of the 199 sources with more than 50 detected photons were analyzed by the authors. Spectral fits were performed with XSPEC 11.3 and with several shell and TCL scripts to automate the process. For each source, they fit the data in the [0.5 - 7.0] keV energy interval with several model spectra: one and two isothermal components (APEC), subject to photoelectric absorption from interstellar and circumstellar material (WABS). Plasma abundances for one-temperature (1T) models were fixed at 0.3 times the solar abundances, while they were both fixed at that value and treated as a free parameter for the two-temperature (2T) models. The absorbing column densities, N<sub>H</sub>, were both left as a free parameter and fixed at values corresponding to the optically/NIR determined extinctions, when available: N<sub>H</sub> = 1.6 x 10<sup>21</sup> A<sub>V</sub>. This table contains the X-ray, optical and NIR data for the 420 detected X-ray sources; it does not contain the master catalog of 1598 optical/NIR sources within the ACIS FOV which was presented in Table 3 of the reference paper, available at <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903/table3.dat">https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903/table3.dat</a> This table was created by the HEASARC in March 2007 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/455/903">CDS Catalog J/A+A/455/903</a> files table1.dat, table4.dat and table6.dat. This is a service provided by NASA HEASARC .
|