Description
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array (ATA). PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5 year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg<sup>2</sup> region of the sky with b > 30 degrees to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on timescales of days to years. Presented here are the results from observations of a 10 deg<sup>2</sup> region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4 month period and has an rms flux density between 200 and 250 µJy. This represents a deeper image by a factor of 4-8 than the authors will achieve over the entire 10,000 deg<sup>2</sup>. In this table, they provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. They identify ~100 new flat-spectrum radio sources, and project that, when completed, PiGSS will identify 104 flat-spectrum sources. In their paper the authors identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months. This table was created by the HEASARC in March 2011 based on electronic versions of Tables 2 and 4 from the reference paper which were obtained from the ApJ web site. The HEASARC changed the sign of the values of the last parameter in Table 4 (herein called spectral_index_3_error) from negative to positive. In March 2013, after receiving a clarification from Steve Croft, the HEASARC corrected the names of the 4 parameters describing the source sizes (to reflect the fact that they were diameters nor radii) to major_axis, minor_axis, fit_major_axis and fit_minor_axis. This is a service provided by NASA HEASARC .
|