ICON
NAVO Directory
X Tip: What's a "Resource"?
Hosted By
STScI Home
Space Telescope
Science Institute

Resource Record Summary

Catalog Service:
Fermi GBM Burst Catalog

Short name: FERMIGBRST
IVOA Identifier: ivo://nasa.heasarc/fermigbrstPublisher: NASA/GSFC HEASARCivo://nasa.heasarc/ASD[Pub. ID]
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/fermigbrst.html
VO Compliance: Level 2: This is a VO-compliant resource.
Status: active
Registered: 2024 May 17 00:00:00Z
Get XML

Description


When referencing results from this online catalog, please cite <a href="https://iopscience.iop.org/article/10.3847/1538-4357/ab7a18">von Kienlin, A. et al. 2020</a>, <a href="http://iopscience.iop.org/0067-0049/211/1/12/">Gruber, D. et al. 2014</a>, <a href="http://iopscience.iop.org/0067-0049/211/1/13/">von Kienlin, A. et al. 2014</a>, and <a href="http://iopscience.iop.org/article/10.3847/0067-0049/223/2/28/">Bhat, P. et al. 2016</a>. This table lists all of the triggers observed by a subset of the 14 GBM detectors (12 NaI and 2 BGO) which have been classified as gamma-ray bursts (GRBs). Note that there are two Browse catalogs resulting from GBM triggers. All GBM triggers are entered in the <a href="/W3Browse/fermi/fermigtrig.html">Fermi GBM Trigger Catalog</a>, while only those triggers classified as bursts are entered in the Burst Catalog. Thus, a burst will be found in both the Trigger and Burst Catalogs. The Burst Catalog analysis requires human intervention; therefore, GRBs will be entered in the Trigger Catalog before the Burst Catalog. The latency requirements are 1 day for triggers and 3 days for bursts. There are four fewer bursts in the online catalog than in the Gruber et al. 2014 paper. The four missing events (081007224, 091013989, 091022752, and 091208623) have not been classified with certainty as GRBs and are not included in the general GRB catalog. This classification may be revised at a later stage. The GBM consists of an array of 12 sodium iodide (NaI) detectors which cover the lower end of the energy range up to 1 MeV. The GBM triggers off of the rates in the NaI detectors, with some Terrestrial Gamma-ray Flash (TGF)-specific algorithms using the bismuth germanate (BGO) detectors, sensitive to higher energies, up to 40 MeV. The NaI detectors are placed around the Fermi spacecraft with different orientations to provide the required sensitivity and FOV. The cosine-like angular response of the thin NaI detectors is used to localize burst sources by comparing rates from detectors with different viewing angles. The two BGO detectors are placed on opposite sides of the spacecraft so that all sky positions are visible to at least one BGO detector. The signals from all 14 GBM detectors are collected by a central Data Processing Unit (DPU). This unit digitizes and time-tags the detectors' pulse height signals, packages the resulting data into several different types for transmission to the ground (via the Fermi spacecraft), and performs various data processing tasks such as autonomous burst triggering. The GRB science products are transmitted to the FSSC in two types of files. The first file, called the "bcat" file, provides basic burst parameters such as duration, peak flux and fluence, calculated from 8-channel data using a spectral model which has a power-law in energy that falls exponentially above an energy EPeak, known as the Comptonized model. The crude 8-channel binning and the simple spectral model allow data fits in batch mode over numerous time bins in an efficient and robust fashion, including intervals with little or no flux, yielding both values for the burst duration, and deconvolved lightcurves for the detectors included in the fit. The bcat file includes two extensions. The first, containing detailed information about energy channels and detectors used in the calculations, is detector-specific, and includes the time history of the deconvolved flux over the time intervals of the burst. The second shows the evolution of the spectral parameters obtained in a joint fit of the included detectors for the model used, usually the Comptonized model described above. The bcat files and their time-varying quantities contained in these two extensions are available at the HEASARC FTP site. Quantities derived from these batch fits are given in the bcat primary header and presented in the Browse table, as described below. The main purpose of the analysis contained in the bcat file is to produce a measure of the duration of the burst after deconvolving the instrument response. The duration quantities are: <pre> * 't50' - the time taken to accumulate 50% of the burst fluence starting at the 25% fluence level. * 't90' - the time taken to accumulate 90% of the burst fluence starting at the 5% fluence level. </pre> By-products of this analysis include fluxes on various timescales and fluences, both obtained using the simple Comptonized model described above. These quantities are detailed in the Browse table using the following prefixes: <pre> * 'flux' - the peak flux over 3 different timescales obtained in the batch mode fit used to calculate t50/t90. * 'fluence' - the total fluence accumulated in the t50/t90 calculation. </pre> The fluxes and fluences derived from the 8-channel data for these bcat files should be considered less reliable than those in the spectral analysis files described below. Analysis methods used in obtaining these quantities are detailed in the first GBM GRB Catalog (Paciesas et al. 2011). Updates of bcat files will be sent (with new version numbers) as these parameters are refined. This "bcat" file is produced for triggers that are classified as GRBs (with exceptions as described below), and supplements the initial data in the trigger or "tcat" file that is produced for all triggers. The second type of file (the spectrum or "scat" file) provides parameter values and goodness-of-fit measures for different types of spectral fits and models. These fits are performed using 128-channel data, either CSPEC or, for short bursts, TTE data. The type and model are coded into the file name. There are currently two spectrum categories: <pre> * Peak flux ('pflx') - a single spectrum over the time range of the peak flux of the burst * Fluence ('flnc') - a single spectrum over the entire burst duration selected by the duty scientist. </pre> Like the bcat files, the scat files have two extensions. The first extension gives detector-specific information, including photon fluxes and fluences for each detector, which are provided for each energy channel. The second extension provides derived quantities such as flux, fluence and model parameters for the joint fit of all included detectors. The scat files and their energy-resolved quantities contained in these two extensions are available in the Fermi data archive at the HEASARC. Quantities derived from these spectral fits are available in the Browse table, as described below and in Goldstein et al. (2011). The spectra are fit with a number of models, with the signal-to-noise ratio of the spectrum often determining whether a more complex model is statistically favored. The current set is: <pre> * Power law ('plaw'), * Comptonized (exponentially attenuated power law; 'comp') * Band ('band') * Smoothly broken power law ('sbpl') </pre> <b>Warnings</b> The bcat and scat files result from two completely independent analyses, and consequently, it is possible that the same quantities might show differences. Indeed, 1) the fluxes and fluences in the "scat" files should be considered more reliable than those in the "bcat" files, with the official fluxes and fluences being those yielded by the statistically favored model ("Best_Fitting_Model" in the Browse table) and with the full energy resolution of the instrument; 2) in both the bcat and scat analyses, the set of detectors used for the fits ("Scat_Detector_Mask" in the Browse table) may not be the same as the set of detectors that triggered GBM ("Bcat_Detector_Mask" in the Browse table); 3) background definitions are different for the bcat and scat analysis (see References below). Finally, for weak events, it is not always possible to perform duration or spectral analyses, and some bursts occur too close in time to South Atlantic Anomaly entries or exits by Fermi with resultant data truncations that prevent background determinations for the duration analysis. There is not an exact one-to-one correspondence between those events for which the duration analysis fails and those which are too weak to have a useful spectral characterization. This means that in the HEASARC Browse table there are a handful of GRBs which have duration parameters but not spectral fit parameters, and vice versa. In these cases, blank entries in the table indicate missing values where an analysis was not possible. Values of 0.0 for the uncertainties on spectral parameters indicate those parameters have been fixed in the fit from which other parameters or quantities in the table were derived. Missing values for model fit parameters indicate that the fit failed to converge for this model. This is true mostly for the more complicated models (SBPL or BAND) when the fits fail to converge for weaker bursts. Bad spectral fits can often result in unphysical flux and fluence values with undefined errors. We include these bad fits but leave the error fields blank when they contain undefined values. The selection criteria used in the first catalog (Goldstein et al. 2011) for the determination of the best-fit spectral model are different from those in the second catalog (Gruber et al. 2014). The results using the two methods on the sample included in Goldstein et al. (2011) are compared in Gruber et al. (2014). The old catalog files can be retrieved using the HEASARC ftp archive tree, under "previous" directories. The values returned by Browse always come from the "current" directories. The chi-squared statistic was not used in the 2nd catalog, either for parameter optimization or model comparison. The chi-squared values are missing for a few GRBs. This is believed to be because of a known software issue and should not be considered indicative of a bad fit. The variable "scatalog" included in the Browse tables and in the FITS files indicates which catalog a file belongs to, with 2 being the current catalog, and 1 (or absent) the first catalog (preliminary values may appear with value 0). The information in this table is provided by the Fermi Gamma-ray Burst Monitor Instrument Operations Center (GIOC) and the Fermi Science Support Center (FSSC). The values come from burst and spectral catalog entry FITS files provided by the GIOC to the FSSC. These FITS files may contain additional data and are available for download. This table is updated automatically within a day or so of new data files being processed and made available. This is a service provided by NASA HEASARC .

More About this Resource

About the Resource Providers

This section describes who is responsible for this resource

Publisher: NASA/GSFC HEASARCivo://nasa.heasarc/ASD[Pub. ID]

Creator: HEASARC Contributor:

Contact Information:
X NASA/GSFC HEASARC help desk
Email:

Status of This Resource

This section provides some status information: the resource version, availability, and relevant dates.

Version: n/a
Availability: This is an active resource.
  • This service apparently provides only public data
Relevant dates for this Resource:
  • Representative: 2024 May 17

This resource was registered on: 2024 May 17 00:00:00Z
This resource description was last updated on: 2024 May 17 00:00:00Z

What This Resource is About

This section describes what the resource is, what it contains, and how it might be relevant.

Resource Class: CatalogService
This resource is a service that provides access to catalog data. You can extract data from the catalog by issuing a query, and the matching data is returned as a table.
Resource type keywords:
  • Catalog
Subject keywords:
  • GRB
This service provides data from:
  • facility: GAMMA-RAY BURSTS
Intended audience or use:
  • Research: This resource provides information appropriate for supporting scientific research.
More Info: https://heasarc.gsfc.nasa.gov/W3Browse/all/fermigbrst.html Literature Reference: 2020ApJ...893...46V

Related Resources:

Services that provide access to data in this resource:
HEASARC TAP ivo://nasa.heasarc/services/xamin [Res. ID]

Data Coverage Information

This section describes the data's coverage over the sky, frequency, and time.

Reference Coordinate System: UTC-ICRS-TOPOXXivo://STClib/CoordSys#UTC-ICRS-TOPO[Res. ID]

Sky Coverage: Regions covered:

  • All-sky: The data from this resource is distributed over the entire sky.
Typical Size Scale (Region of Regard): , 3 deg

Wavebands covered:

  • Gamma-ray

Available Service Interfaces

Simple Cone SearchXXSearch Me

This is a standard IVOA service that takes as input a position in the sky and a radius and returns catalog records with positions within that radius.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • https://heasarc.gsfc.nasa.gov/xamin/vo/cone?showoffsets&table=fermigbrst&
Maximum search radius accepted: 180 degrees
Maximum number of matching records returned: 99999
This service supports the VERB input parameter:
Use VERB=1 to minimize the returned columns or VERB=3 to maximize.
Table Access Protocol - Auxiliary ServiceXX

This is a standard IVOA service that takes as input an ADQL or PQL query and returns tabular data.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for the standard interface:
  • https://heasarc.gsfc.nasa.gov/xamin/vo/tap
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:
  • URL-based interface: https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/getvotable.pl?name=fermigbrst
Custom Service

This is service that does not comply with any IVOA standard but instead provides access to special capabilities specific to this resource.

VO Compliance: Level 2: This is a VO-compliant resource.
Available endpoints for this service interface:


Developed with the support of the National Science Foundation
under Cooperative Agreement AST0122449 with the Johns Hopkins University
The NAVO project is a member of the International Virtual Observatory Alliance

This NAVO Application is hosted by the Space Telescope Science Institute

Member
ivoa logo
Contact Us