Astrometric CCD observations have been made of wide (~3 to 60 arcsec) southern double stars selected from the Washington Double Star catalogue (WDS). Southern double stars have not been well studied in the past; typically they had not been measured since about 1930, and ~50% of them have been observed only once before our observations. Of the pairs measured ~80% show no evidence of motion since the last observation. This is Paper II in which we present the observations of 290 WDS stars in the approximate RA range 17h13m to 07h30m and in the declination range -70{deg} to -60{deg}. We suggest 412 companions for these 290 stars and list 29 (10%) pairs that have shown significant motion.
The WiggleZ Dark Energy Survey is a survey of 240000 emission-line galaxies in the distant Universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4-8Gyr. The target galaxies are selected using ultraviolet (UV) photometry from the Galaxy Evolution Explorer satellite, with a flux limit of NUV<22.8mag. We also require that the targets are detected at optical wavelengths, specifically in the range 20.0<r<22.5mag. We use the Lyman break method applied to the UV colours, with additional optical colour limits, to select high-redshift galaxies. The galaxies generally have strong emission lines, permitting reliable redshift measurements in relatively short exposure times on the AAT. The median redshift of the galaxies is z_med_=0.6. The redshift range containing 90 per cent of the galaxies is 0.2<z<1.0. The survey will sample a volume of ~1Gpc^3^ over a projected area on the sky of 1000deg^2^, with an average target density of 350deg^-2^.
The WiggleZ Dark Energy Survey measured the redshifts of over 200000 ultraviolet (UV)-selected (N_UV_<22.8mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large-scale distribution of galaxies over the redshift range 0.2<z<1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here, we present the final data release of the survey: a catalogue of 225415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (-25mag<M_FUV_< -22mag) galaxies have very broad H{beta} emission from active nuclei, as well as a broad second component to the [OIII] (495.9nm, 500.7nm) doublet lines that is blueshifted by 100km/s, indicating the presence of gas outflows in these galaxies. The composite spectra allow us to detect and measure the temperature-sensitive [OIII] (436.3nm) line and obtain metallicities using the direct method. The metallicities of intermediate stellar mass (8.8<log(M*/M_{sun}_)<10) WiggleZ galaxies are consistent with normal emission-line galaxies at the same masses. In contrast, the metallicities of high stellar mass (10<log(M*/M_{sun}_)<12) WiggleZ galaxies are significantly lower than for normal emission-line galaxies at the same masses. This is not an effect of evolution as the metallicities do not vary with redshift; it is most likely a property specific to the extremely UV-luminous WiggleZ galaxies.
Wilson & Bappu (1957ApJ...125..661W) have shown the existence of a remarkable correlation between the width of the emission in the core of the K line of CaII and the absolute visual magnitude of late-type stars. Here we present a new calibration of the Wilson-Bappu effect based on a sample of 119 nearby stars. We use, for the first time, width measurements based on high resolution and high signal to noise ratio CCD spectra and absolute visual magnitudes from the Hipparcos database.
This catalog contains the surface brightness measurements of ~41500 galaxies detected in the B images of the WINGS cluster survey. For each galaxy B magnitude, mean surface brightness, effective radius, Sersic index and axial ratio are given, together with their errors. These global parameters were obtained by simultaneously fitting the major and minor axis light growth curves of galaxies with a 2D flattened Sersic-law, convolved by the appropriate, space-varying PSF, which was previously evaluated by the tool itself. (http://adsabs.harvard.edu/abs/2006A%26A...446..373P)
We present a multi-wavelength analysis of the galaxies in nine clusters selected from the WINGS dataset, examining how galaxy structure varies as a function of wavelength and environment using the state of the art software galapagos-2. We simultaneously fit single-Sersic functions on three optical (u, B and V) and two near-infrared (J and K) bands thus creating a wavelength-dependent model of each galaxy. We measure the magnitudes, effective radius (Re), the Sersic index (n), axis ratio, and position angle in each band. The sample contains 790 cluster members (located close to the cluster centre <0.64xR200) and 254 non-member galaxies that we further separate based on their morphology into ellipticals, lenticulars, and spirals. We find that the Sersic index of all galaxies inside clusters remains nearly constant with wavelength while Re decreases as wavelength increases for all morphological types. We do not observe a significant variation on n and Re as a function of projected local density and distance from the clusters centre. Comparing the n and Re of bright cluster galaxies with a subsample of non-member galaxies we find that bright cluster galaxies are more concentrated (display high n values) and are more compact (low Re). Moreover, the light profile (N) and size (R) of bright cluster galaxies does not change as a function of wavelength in the same manner as non-member galaxies.
This is the second u-band extension of the WIde-field Nearby Galaxy-cluster Survey (WINGS), obtained by imaging 39 clusters with the ESO-VLT survey telescope. It follows the first one, realized with several telescopes of the northern hemisphere in the U Cousin-Bessel filter band (Omizzolo et al., 2014A&A...561A.111O, Cat. J/A+A/561/A111), that covered 17 clusters. The u-band data, in combination with those already achieved by the WINGS survey, will permit a detailed multi-wavelength investigation of the properties of the member galaxies from the cluster center out to the periphery. We have derived with SEXT the main properties of the galaxies in the observed fields and measured the u-V colors on circular apertures of increasing radius. The photometric accuracy of the magnitudes has been calibrated with the standard stars and tested by means of comparisons with the u-band data of the Sloan Digital Sky Survey (SDSS). We present the catalogs of the photometric analysis performed by SEXT. Then we provide a brief analysis of the u-V vs V color-magnitude diagram of our clusters, the plots of the color as a function of the cluster-centric distance (for cluster members only) and the correlation of the current star formation rate (SFR) vs the absolute V and u magnitudes for the galaxies in the observed fields.
This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04<z<0.07) located far from the galactic plane (|b|>200deg). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. We publish deep optical photometric catalogs (90% complete at V21.7, which translates to ~ MV* + 6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of "unknown" classification (~16%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2m. The star/galaxy classification of the bright objects (V<20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data with that from deep counts of galaxies and star counts from models of our Galaxy. Both sets turned out to be consistent with our data within ~5% (in the ratio galaxies/total) up to V~24. Finally, we remark that the application of our special procedure to remove large halos improves the photometry of the large galaxies in our sample with respect to the use of blind automatic procedures and increases (~16%) the detection rate of objects projected onto them.
The catalog gives the measurements of the optical lines equivalent widths and statistical errors for a sample of ~4400 objects detected in 48 WINGS clusters for which the spectrum is available and reliable. Emission lines have negative EWs, and absorption lines positive EWs, with all the quantities given at rest frame. Spectra were obtained with WYFFOS@WHT and 2dF@AAT and have a resolution of 6 and 9 AA FWHM, respectively. The wavelength coverage ranges from ∼ 3590 to ∼ 6800 AA for the WHT observations, while spectra taken at the AAT cover the ∼ 3600 to ∼ 8000 AA domain. For each object the catalog gives also the magnitude and radial completeness (or weight) that, once combined, describe the global completeness of the sample. Finally a spectral classification is available, made on the basis of the presence/absence and intensity of spectral lines (following Poggianti et al., 1999): 1=e(a); 2=e(b); 3=e(c); 4=k; 5=k+a; 6=a+k.
We present the B, V, and K band surface photometry catalogs obtained by running the automatic software GASPHOT on galaxies from the WINGS cluster survey with isophotal areas larger than 200 pixels. The luminosity growth curves of stars and galaxies in a given catalog relative to a given cluster image were obtained simultaneously by slicing the image with a fixed surface brightness step in several SExtractor runs. Then, using a single Sersic law convolved with a space-varying point spread function (PSF), GASPHOT performed a simultaneous {chi}^2^ best-fit of the major- and minor-axis luminosity growth curves of galaxies. We outline the GASPHOT performances and compare our surface photometry with that obtained by SExtractor, GALFIT, and GIM2D. This analysis is aimed at providing statistical information about the accuracy that is generally achieved by the softwares for automatic surface photometry of galaxies.