- ID:
- ivo://CDS.VizieR/J/A+A/585/A47
- Title:
- CALIFA color/metallicity gradients connections
- Short Name:
- J/A+A/585/A47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. Sloan Digital Sky Survey (SDSS) g'- and r'-band surface brightness, (g'-r') color, and ionized-gas oxygen abundance profiles for 324 galaxies within the Calar Alto Legacy Integral Field Area (CALIFA) survey are used for this purpose. We perform a detailed light-profile classification, finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively), while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g'-r') color of ~0.5mag and an ionized-gas metallicity flattening associated with it only in the case of low-mass galaxies. Comparatively, more massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass for these systems results in p-values as low as 0.01. Independent of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses <=10^10^M_{sun}_ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass downsizing effect on the population of Type III galaxies that recently experienced an enhanced inside-out growth.
Number of results to display per page
Search Results
1922. CALIFA DR2
- ID:
- ivo://CDS.VizieR/J/A+A/576/A135
- Title:
- CALIFA DR2
- Short Name:
- J/A+A/576/A135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500{AA} with a spectral resolution of 6.0{AA} (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840{AA} with a spectral resolution of 2.3{AA} (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improved spectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2.4". In total, the second data release contains over 1.5 million spectra.
- ID:
- ivo://CDS.VizieR/J/MNRAS/492/3073
- Title:
- CALIFA galaxies hosting an AGN
- Short Name:
- J/MNRAS/492/3073
- Date:
- 02 Feb 2022 07:33:25
- Publisher:
- CDS
- Description:
- We study the presence of optically-selected Active Galactic Nuclei (AGNs) within a sample of 867 galaxies extracted from the extended Calar-Alto Legacy Integral Field spectroscopy Area (eCALIFA) spanning all morphological classes. We identify 10 Type-I and 24 Type-II AGNs, amounting to ~4 per cent of our sample, similar to the fraction reported by previous explorations in the same redshift range. We compare the integrated properties of the ionized and molecular gas, and stellar population of AGN hosts and their non-active counterparts, combining them with morphological information. The AGN hosts are found in transitory parts (i.e. green-valley) in almost all analysed properties which present bimodal distributions (i.e. a region where reside star-forming galaxies and another with quiescent/retired ones). Regarding morphology, we find AGN hosts among the most massive galaxies, with enhanced central stellar-mass surface density in comparison to the average population at each morphological type. Moreover, their distribution peaks at the Sab-Sb classes and none are found among very late-type galaxies (>Scd). Finally, we inspect how the AGN could act in heir hosts regarding the quenching of star-formation. The main role of the AGN in the quenching process appears to be the removal (or heating) of molecular gas, rather than an additional suppression of the already observed decrease of the star-formation efficiency from late-to-early type galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/604/A4
- Title:
- CALIFA galaxies observational hints
- Short Name:
- J/A+A/604/A4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- According to numerical simulations, stars are not always kept at their birth galactocentric distances but migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if it is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. We investigate the role of radial migration on the light distribution and the radial stellar content by comparing the inner colour, age and metallicity gradients for galaxies with different SB profiles. We define these inner parts avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). We analyse 214 spiral galaxies from the CALIFA survey covering different SB profiles. We make use of GASP2D and SDSS data to characterise their light distribution and obtain colour profiles. The stellar age and metallicity profiles are computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the IFS CALIFA data. The distributions of the colour, stellar age and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all and type III the shallowest, with type I galaxies displaying an intermediate behaviour. These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems with type II galaxies presenting the lowest radial migration efficiency. In such scenario, radial migration mixes the stellar content flattening the radial stellar properties and shaping different SB profiles. However, in sight of these results we cannot further quantify its importance in shaping spiral galaxies, and other processes such as recent star formation or satellite accretion might play a role.
- ID:
- ivo://CDS.VizieR/J/A+A/595/A62
- Title:
- CALIFA galaxies O/H and N/O slopes
- Short Name:
- J/A+A/595/A62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The study of the integrated properties of star-forming galaxies is central to understand their formation and evolution. Some of these properties are extensive and therefore their analysis require totally covering and spatially resolved observations. Among these properties, metallicity can be defined in spiral discs by means of integral field spectroscopy (IFS) of individual HII regions. The simultaneous analysis of the abundances of primary elements, as oxygen, and secondary, as nitrogen, also provides clues about the star formation history and the processes that shape the build-up of spiral discs. Our main aim is to analyse simultaneously O/H and N/O abundance ratios in HII regions in different radial positions of the discs in a large sample of spiral galaxies to obtain the slopes and the characteristic abundance ratios that can be related to their integrated properties. We analysed the optical spectra of individual selected HII regions extracted from a sample of 350 spiral galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-MISTRY, which, according to Perez-Montero (2014MNRAS.441.2663P), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances.
- ID:
- ivo://CDS.VizieR/J/A+A/632/A59
- Title:
- CALIFA galaxies stellar angular momentum
- Short Name:
- J/A+A/632/A59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the apparent stellar angular momentum over the optical extent of 300 galaxies across the Hubble sequence using integral-field spectroscopic (IFS) data from the CALIFA survey. Adopting the same {lambda}_R_ parameter previously used to distinguish between slow and fast rotating early-type (elliptical and lenticular) galaxies, we show that spiral galaxies are almost all fast rotators, as expected. Given the extent of our data, we provide relations for {lambda}_R_ measured in different apertures (e.g. fractions of the effective radius: 0.5R_e_, R_e_, 2R_e_), including conversions to long-slit 1D apertures. Our sample displays a wide range of {lambda}_Re_ values, consistent with previous IFS studies. The fastest rotators are dominated by relatively massive and highly star-forming Sb galaxies, which preferentially reside in the main star-forming sequence. These galaxies reach {lambda}_Re_ values of ~0.85, and they are the largest galaxies at a given mass, while also displaying some of the strongest stellar population gradients. Compared to the population of S0 galaxies, our findings suggest that fading may not be the dominant mechanism transforming spirals into lenticulars. Interestingly, we find that {lambda}_Re_ decreases for late-type Sc and Sd spiral galaxies, with values that occasionally set them in the slow-rotator regime. While for some of them this can be explained by their irregular morphologies and/or face-on configurations, others are edge-on systems with no signs of significant dust obscuration. The latter are typically at the low-mass end, but this does not explain their location in the classical (V/{sigma}, {epsilon}) and ({lambda}_Re_, {epsilon}) diagrams. Our initial investigations, based on dynamical models, suggest that these are dynamically hot disks, probably influenced by the observed important fraction of dark matter within R_e_.
- ID:
- ivo://CDS.VizieR/J/A+A/584/A87
- Title:
- CALIFA sample SFR calibration
- Short Name:
- J/A+A/584/A87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. We obtain integrated H{alpha}, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005<z<0.03 using single-band and hybrid tracers. We aim to determine whether the extinction-corrected H{alpha} luminosities provide a good measure of the SFR and to shed light on the origin of the discrepancies between tracers. Updated calibrations referred to H{alpha} are provided. The well-defined selection criteria and large statistics allow us to carry out this analysis globally and split by properties, including stellar mass and morphological type. We derive integrated, extinction-corrected H{alpha} fluxes from CALIFA, UV surface and asymptotic photometry from GALEX and integrated WISE 22{mu}m and IRAS fluxes. We find that the extinction-corrected H{alpha} luminosity agrees with the hybrid updated SFR estimators based on either UV or H{alpha} plus IR luminosity over the full range of SFRs (0.03-20M_{sun}_/yr). The coefficient that weights the amount of energy produced by newly-born stars that is reprocessed by dust on the hybrid tracers, a_IR_, shows a large dispersion. However, this coefficient does not became increasingly small at high attenuations, as expected if significant highly-obscured H{alpha} emission were missed, i.e., after a Balmer decrement-based attenuation correction is applied. Lenticulars, early-type spirals, and type-2 AGN host galaxies show smaller coefficients because of the contribution of optical photons and AGN to dust heating. In the local Universe, the H{alpha} luminosity derived from IFS observations can be used to measure SFR, at least in statistically-significant, optically-selected galaxy samples, once stellar continuum absorption and dust attenuation effects are accounted for. The analysis of the SFR calibrations by galaxies properties could potentially be used by other works to study the impact of different selection criteria in the SFR values derived, and to disentangle selection effects from other physically motivated differences, such as environmental or evolutionary effects.
- ID:
- ivo://CDS.VizieR/J/ApJ/848/87
- Title:
- CALIFA SFRs. II. Bulges, bars & disks
- Short Name:
- J/ApJ/848/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We estimate the current extinction-corrected H{alpha} star formation rate (SFR) of the different morphological components that shape galaxies (bulges, bars, and disks). We use a multicomponent photometric decomposition based on Sloan Digital Sky Survey imaging to Calar Alto Legacy Integral Field Area Integral Field Spectroscopy (IFS) datacubes for a sample of 219 galaxies. This analysis reveals an enhancement of the central SFR and specific SFR (sSFR = SFR/M*) in barred galaxies. Along the main sequence, we find that more massive galaxies in total have undergone efficient suppression (quenching) of their star formation, in agreement with many studies. We discover that more massive disks have had their star formation quenched as well. We evaluate which mechanisms might be responsible for this quenching process. The presence of type 2 AGNs plays a role at damping the sSFR in bulges and less efficiently in disks. Also, the decrease in the sSFR of the disk component becomes more noticeable for stellar masses around 10^10.5^M_{sun}_; for bulges, it is already present at ~10^9.5^M_{sun}_. The analysis of the line- of-sight stellar velocity dispersions ({sigma}) for the bulge component and of the corresponding Faber-Jackson relation shows that AGNs tend to have slightly higher {sigma} values than star-forming galaxies for the same mass. Finally, the impact of environment is evaluated by means of the projected galaxy density, {Sigma}5. We find that the SFR of both bulges and disks decreases in intermediate- to high-density environments. This work reflects the potential of combining IFS data with 2D multicomponent decompositions to shed light on the processes that regulate the SFR.
- ID:
- ivo://CDS.VizieR/J/A+A/594/A36
- Title:
- CALIFA Survey DR3 list of galaxies
- Short Name:
- J/A+A/594/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper describes the third public data release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the second public data release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5m telescope at the Calar Alto Observatory. Three different spectral setups are available: i) a low-resolution V500 setup covering the wavelength range 3745-7500{AA} (4240-7140{AA} unvignetted) with a spectral resolution of 6.0{AA} (FWHM) for 646 galaxies, ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840{AA} (3650-4620{AA} unvignetted) with a spectral resolution of 2.3{AA} (FWHM) for 484 galaxies, and iii) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0{AA} and a wavelength range between 3700-7500{AA} (3700-7140{AA} unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ~1.5 million independent spectra.
- ID:
- ivo://CDS.VizieR/J/AJ/154/109
- Title:
- California-Kepler Survey (CKS). III. Planet radii
- Short Name:
- J/AJ/154/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The size of a planet is an observable property directly connected to the physics of its formation and evolution. We used precise radius measurements from the California-Kepler Survey to study the size distribution of 2025 Kepler planets in fine detail. We detect a factor of >=2 deficit in the occurrence rate distribution at 1.5-2.0R_{Earth}_. This gap splits the population of close-in (P<100days) small planets into two size regimes: R_P_<1.5R_{Earth}_ and R_P_=2.0--3.0R_{Earth}_, with few planets in between. Planets in these two regimes have nearly the same intrinsic frequency based on occurrence measurements that account for planet detection efficiencies. The paucity of planets between 1.5 and 2.0R_{Earth}_ supports the emerging picture that close-in planets smaller than Neptune are composed of rocky cores measuring 1.5R_{Earth}_ or smaller with varying amounts of low-density gas that determine their total sizes.