- ID:
- ivo://nasa.heasarc/m31xmm2
- Title:
- M 31 XMM-Newton Spectral Survey X-Ray Point Source Catalog
- Short Name:
- M31XMM2
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the results of a complete spectral survey of the X-ray point sources detected in five XMM-Newton observations along the major axis of M 31 but avoiding the central bulge, aimed at establishing the population characteristics of X-ray sources in this galaxy. One observation of each disc field of M 31 was taken using the EPIC pn and MOS cameras on XMM-Newton in January and June 2002. The authors obtained background-subtracted spectra and lightcurves for each of the 335 X-ray point sources detected across the five observations from 2002. They also correlate their source list with those of earlier X-ray surveys and radio, optical and infra-red catalogs. Sources with more than 50 source counts are individually spectrally fit in order to create the most accurate luminosity functions of M 31 to date. Based on the spectral fitting of these sources with a power law model, the authors observe a broad range of best-fit photon index. From this distribution of best-fit index, they identify 16 strong high mass X-ray binary system candidates in M 31. They show the first cumulative luminosity functions created using the best-fit spectral model to each source with more than 50 source counts in the disc of M 31. The cumulative luminosity functions show a distinct flattening in the X-ray luminosity L<sub>X</sub> interval 37.0 <~ log L<sub>X</sub> erg s<sup>-1</sup> <~ 37.5. Such a feature may also be present in the X-ray populations of several other galaxies, but at a much lower statistical significance. The authors investigate the number of AGN present in their source list and find that, above L<sub>X</sub> ~1.4 x 10<sup>36</sup> erg s<sup>-1</sup>, the observed population is statistically dominated by the point source population of M 31. This table was created by the HEASARC in October 2009 based on the electronic version of Table A1 from the reference paper which was obtained from the CDS (their catalog J/A+A/495/733 file tablea1.dat. This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/m33snrxmm
- Title:
- M 33 XMM-Newton Supernova Remnants Catalog
- Short Name:
- M33SNRXMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors of this catalog carried out a study of the X-ray properties of the supernova remnant (SNR) population in M 33 with XMM-Newton, comprising deep observations of eight fields in M 33 covering all of the area within the D<sub>25</sub> contours, and with a typical luminosity of 7.1 x 10<sup>34</sup> erg/s (0.2-2.0keV). With their deep observations and large field of view they have detected 105 SNRs at the 3-sigma level, of which 54 SNRs are newly detected in X-rays, and three are newly discovered SNRs. Combining XMM-Newton data with deep Chandra survey data allowed detailed spectral fitting of 15 SNRs, for which they have measured temperatures, ionization time-scales and individual abundances. This large sample of SNRs allowed the authors to construct an X-ray luminosity function, and compare its shape to luminosity functions from host galaxies of differing metallicities and star formation rates to look for environmental effects on SNR properties. They concluded that while metallicity may play a role in SNR population characteristics, differing star formation histories on short time-scales, and small-scale environmental effects appear to cause more significant differences between X-ray luminosity distributions. In addition, they analyze the X-ray detectability of SNRs, and find that in M 33 SNRs with higher [SII]/H-alpha ratios, as well as those with smaller galactocentric distances, are more detectable in X-rays. This catalog utilized data from a deep survey of M 33 using an 8 field XMM-Newton mosaic that extends out to the D25 isophote. The point source catalog from this survey was published by W15 (Williams+2015, J/ApJS/218/9). In addition to the catalog of W15, the authors utilized high-resolution observations from the Chandra ACIS Survey of M 33 (ChASeM33, Tullmann+2011, J/ApJS/193/31) for the purposes of obtaining X-ray spectral fits. This table was ingested by the HEASARC in October 2019 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/472/308">CDS Catalog J/MNRAS/472/308</a> files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/m101xmm
- Title:
- M 101 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- M101XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors describe the global X-ray properties of the point source population in the grand-design spiral galaxy M 101, as seen with XMM-Newton. 108 X-ray sources are detected within the D<sub>25</sub> ellipse (~28.8 arcminutes diameter) of M101, of which ~24 are estimated to be background galaxies. Multiwavelength cross-correlations show that 20 sources are coincident with H II regions and/or supernova remnants (SNRs), seven have identified/candidate background galaxy counterparts, six are coincident with foreground stars and one has a radio counterpart. While the spectral and timing properties of the brightest sources were presented by Jenkins et al. (2004, MNRAS, 349, 404: Paper I), in the present analysis the authors apply an X-ray colour classification scheme to split the entire source population into different types, i.e. X-ray binaries (XRBs), SNRs, absorbed sources, background sources and supersoft sources (SSSs). Approximately 60% of the population can be classified as XRBs, although there is source contamination from background active galactic nuclei (AGN) in this category as they have similar spectral shapes in the X-ray regime. 15 sources have X-ray colours consistent with SNRs, three of which correlate with known SNR/HII radio sources. Another two are promising new candidates for SNRs, one is unidentified, and the remainder are a mixture of foreground stars, bright soft XRBs and AGN candidates. The authors also detect 14 candidate SSSs, with significant detections in the softest X-ray band (0.3 - 1 keV) only. 16 sources display short-term variability during the XMM-Newton observation, twelve of which fall into the XRB category, giving additional evidence of their accreting nature. Using archival Chandra and ROSAT High Resolution Imager data, the authors find that ~40% of the XMM sources show long-term variability over a baseline of up to ~10 yr, and eight sources display potential transient behaviour between observations. Sources with significant flux variations between the XMM and Chandra observations show a mixture of softening and hardening with increasing luminosity. The spectral and timing properties of the sources coincident with M 101 confirm that its X-ray source population is dominated by accreting XRBs. The authors cross-correlated the XMM-Newton source list with previous X-ray observations of M 101. For the Chandra observations detailed in Section 2 of the reference paper, they matched on-axis sources (whose positions are generally accurate to ~1 arcsec) to within the XMM-Newton 3-sigma errors. For off-axis sources, the decreasing Chandra positional accuracy to ~2 arcsec was also taken into account. However, given the large PSF of XMM-Newton (~6 arcsec FWHM), they also checked for any contamination from additional fainter sources detected only by Chandra by searching for sources that lie within 15 arcsec of the XMM-Newton source positions (this corresponds to the on-axis 68% energy cut-out radius used in emldetect). In total, 71 XMM-Newton sources were unambiguously matched to single Chandra sources within the 3-sigma errors, whereas the nuclear source is resolved into two sources by Chandra. These matches are listed in this table, as are additional sources matching to within 15 arcsec. For completeness, both the CXOU designations of Kilgard et al. (2005, ApJS, 159, 214) and equivalent source source numbers from Pence et al. (2001, ApJ, 561, 189) are given. M 101 was observed with XMM-Newton for 42.8 ks on 2002 June 4 (Obs ID 0104260101). The EPIC MOS-1, MOS-2 and PN cameras were operated with medium filters in the 'Prime Full Window' mode, which utilizes the full ~ 30-arcmin field of view of XMM-Newton, covering the entire D<sub>25</sub> ellipse of M101. This table was created by the HEASARC in October 2011 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/357/401">CDS Catalog J/MNRAS/357/401</a> files table1.dat and table2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/m83xmm
- Title:
- M 83 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- M83XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This database table contains results obtained from the analysis of three XMM-Newton observations of the grand-design barred spiral galaxy M 83. The aims of this study were to study the X-ray source populations in M 83 and to calculate the X-ray luminosity functions of X-ray binaries for different regions of the galaxy. The authors detected 189 sources in the XMM-Newton field of view in the energy range of 0.2-12 keV. They constrained their nature by means of spectral analysis, hardness ratios, studies of the X-ray variability, and cross-correlations with catalogs in X-ray, optical, infrared, and radio wavelengths. The authors identified and classified 12 background objects, five foreground stars, two X-ray binaries, one supernova remnant candidate, one super-soft source candidate and one ultra-luminous X-ray source. Among these sources, they classified for the first time three active galactic nuclei (AGN) candidates. the authors derived X-ray luminosity functions for the X-ray sources in M 83 in the 2-10 keV energy range, within and outside the D<sub>25</sub> ellipse, correcting the total X-ray luminosity function for incompleteness and subtracting the AGN contribution. The X-ray luminosity function inside the D25 ellipse is consistent with that previously observed by Chandra. The Kolmogorov-Smirnov test shows that the X-ray luminosity function of the outer disc and the AGN luminosity distribution are uncorrelated with a probability of ~99.3%. The authors also found that the X-ray sources detected outside the D<sub>25</sub> ellipse and the uniform spatial distribution of AGNs are spatially uncorrelated with a significance of 99.5%. They interpret these results as an indication that part of the observed X-ray sources are X-ray binaries in the outer disc of M 83. The authors analyzed the public archival XMM-Newton data of M 83 (PIs: Watson, Kuntz). Three observations were analyzed, one pointing at the center of the galaxy (obs.1) and two in the south, which covered the outer arms with a young population of stars discovered with GALEX. The details of these observations are given in Table 1 of the reference paper (summarized below): <pre> EPIC EPIC EPIC No ObsID Date RA DE PN MOS1 MOS2 Mode F Texp F Texp F Texp PN MOS 1 0110910201 2003-01-27 13:37:05.16 -29:51:46.1 t 21.2 m 24.6 m 24.6 EFF FF 2 0503230101 2008-01-16 13:37:01.09 -30:03:49.9 m 15.4 m 19.0 m 19.0 EFF FF 3 0552080101 2008-08-16 13:36:50.87 -30:03:55.2 m 25.0 m 28.8 m 28.8 EFF FF </pre> where F is the filter (t for thin, m for medium), T<sub>exp</sub> is the exposure time in ks, EFF = extended full frame imaging mode, and FF = full frame imaging mode. This table was created by the HEASARC in April 2013 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/553/A7">CDS Catalog J/A+A/553/A7</a> files tableb1.dat and tableb2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/m33xmm2
- Title:
- M 33 XMM-Newton X-Ray Variability Source Catalog
- Short Name:
- M33XMM2
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the summary results of an analysis of the individual observations (24 archival raster observations) of a deep XMM-Newton survey of the Local Group spiral galaxy M 33. The authors detected a total of 350 sources with fluxes (in the 0.2 - 4.5 keV energy band) in the range from 6.7 x 10<sup>-16</sup> to 1.5 x 10<sup>-11</sup> erg/cm<sup>2</sup>/s. This comprehensive study considered flux variability, spectral characteristics, and classification of the detected objects. Thirty-nine objects in the catalog are new sources, while 311 were already detected in a previous analysis of most of the same data using combined images. The authors present improved positions of these sources, ans also systematically searched for flux variability on time scales of hours to months or years. The detected variability was then used to classify 8 new X-ray binary candidates in M 33. Together with the hardness ratio method and cross-correlation with optical, infrared, and radio data, the authors also classified or confirmed previous classification of 25 supernova remnants and candidates, 2 X-ray binaries, and 11 super-soft source candidates (7 of which are new SSS candidates). In addition, they classified 13 active galactic nuclei and background galaxies, 6 stars, and 23 foreground star candidates in the direction of M 33. A further 206 objects are classified as 'hard', approximately half of which are sources intrinsic to M 33. The relative contribution of the classified XRB and SSS in M 33 is now comparable to M 31. The luminosity distribution of SNRs in both spiral galaxies is almost the same, although the number of the detected SNRs in M 33 remains much higher. This table was created by the HEASARC in March 2007 based on the CDS table J/A+A/448/1247 file table4.dat. The CDS has another table which lists the properties of the sources detected on an observation-by-observation basis which is not included as part of this Browse table but is available at <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/448/1247/table5.dat.gz">https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/448/1247/table5.dat.gz</a> This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2516xmm
- Title:
- NGC 2516 Cluster XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC2516XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the results from a deep X-ray survey of the young (~ 140 Myr), rich open cluster NGC 2516 obtained with the EPIC camera on board the XMM-Newton satellite. By combining the data from six observations, a high sensitivity, greater than a factor of 5 with respect to recent Chandra observations, has been achieved. Kaplan-Meier estimators of the cumulative X-ray luminosity distribution, statistically corrected for non-member contaminants, were built by the authors and compared to those of the nearly coeval Pleiades cluster. 431 X-ray sources were detected, and 234 of them have as optical counterparts cluster stars spanning the entire NGC 2516 main sequence. On the basis of X-ray emission and optical photometry, 20 new candidate members of the cluster have been identified; at the same time there are 49 X-ray sources without known optical or infrared counterpart. The X-ray luminosities of cluster stars span the range log L<sub>x</sub> (erg s<sup>-1</sup>) = 28.4 - 30.8. The representative coronal temperatures span the 0.3 - 0.6 keV (3.5 - 8 MK) range for the cool component and 1.0 - 2.0 keV (12 - 23 MK) for the hot one; similar values were found in other young open clusters like the Pleiades, IC 2391, and Blanco 1. While no significant differences were found in their X-ray spectra, NGC 2516 solar-type stars are definitely less luminous in X-rays than their nearly coeval Pleiades counterparts. The comparison with a previous ROSAT survey reveals the lack of variability amplitudes larger than a factor of 2 in solar-type cluster stars in a ~ 11 yr time scale, and thus activity cycles like in the Sun are probably absent or have a different period and amplitude in young stars. NGC 2516 has been observed several times with XMM-Newton during the first two years of satellite operations for calibration purposes. The observations used in this analysis span a period of 19 months with exposure times between 10 and 20 ks. All of these observations have been performed with the thick filter. In the combined EPIC datasets the authors detected 431 X-ray sources with a significance level greater than 5.0 sigma, which should lead statistically to at most one spurious source in the field of view. This table was created by the HEASARC in May 2007 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/450/993">CDS catalog J/A+A/450/993</a> files tablea1.dat and tableb1.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc1512xmm
- Title:
- NGC 1512/NGC 1510 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC1512XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The galaxy NGC 1512 is interacting with the smaller galaxy NGC 1510 and shows a peculiar morphology, characterized by two extended arms immersed in an HI disc whose size is about four times larger than the optical diameter of NGC 1512. The authors have performed the first deep X-ray observation of the galaxies NGC 1512 and NGC 1510 with XMM-Newton to gain information on the population of X-ray sources and diffuse emission in this system of interacting galaxies. They have identified and classified the sources detected in the XMM-Newton field of view by means of spectral analysis, hardness-ratios calculated with a Bayesian method, X-ray variability, and cross-correlations with catalogs in optical, infrared, and radio wavelengths. They also made use of archival Swift (X-ray) and Australia Telescope Compact Array (radio) data to better constrain the nature of the sources detected with XMM-Newton. They detected 106 sources in the energy range of 0.2 - 12 keV, out of which 15 are located within the D<sub>25</sub> regions of NGC 1512 and NGC 1510 and at least six sources coincide with the extended arms. They identified and classified six background objects and six foreground stars. In the reference paper, they discuss the nature of a source within the D<sub>25</sub> ellipse of NGC 1512, whose properties indicate a quasi-stellar object or an intermediate ultra-luminous X-ray source. Taking into account the contribution of low-mass X-ray binaries and active galactic nuclei, the number of high-mass X-ray binaries detected within the D<sub>25</sub> region of NGC 1512 is consistent with the star formation rate obtained in previous works based on radio, infrared optical, and UV wavelengths. The authors detected diffuse X-ray emission from the interior region of NGC 1512 with a plasma temperature of kT = 0.68(0.31-0.87) keV and a 0.3 - 10 keV X-ray luminosity of 1.3E+38erg/s, after correcting for unresolved discrete sources. The galaxy pair NGC 1512/1510 was observed with XMM-Newton (ObsID: 0693160101) between 2012 June 16 (20:31 UTC) and 2012 June 17 (16:24 UTC) in a single, 63-ks exposure observation. The data analysis was performed through the XMM-Newton Science Analysis System (SAS) software (version 12.0.1). The observation was largely contaminated by high background due to proton flares. After rejecting time intervals affected by high background, the net good exposure time was reduced to 26.0 ks for PN, 39.8 ks for the MOS1 and 34.8 ks for the MOS2. For each instrument, the data were divided into five energy bands: <pre> B<sub>1</sub> : 0.2 - 0.5 keV B<sub>2</sub> : 0.5 - 1.0 keV B<sub>3</sub> : 1.0 - 2.0 keV B<sub>4</sub> : 2.0 - 4.5 keV B<sub>5</sub> : 4.5 - 12.0 keV </pre> For the PN, data were filtered to include only single events (PATTERN = 0) in the energy band B__1, and single and double events (PATTERN <= 4) for the other energy bands. The authors excluded the energy range 7.2 - 9.2 keV to reduce the background produced by strong fluorescence lines in the outer detector area. For the MOS, single to quadruple events (PATTERN <= 12) were selected. The source detection procedure is described in Section 2.1 of the reference paper. In the final step, the authors adopted a minimum likelihood of L = 6. They removed false detections (artifacts on the detectors or diffuse emission structures) by visual inspection. They detected 106 total point sources in the NGC 1512/1510 field of view. This table was created by the HEASARC in July 2014 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/566/A115">CDS Catalog J/A+A/566/A115</a> files tableb1.dat and tableb2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc253xmm
- Title:
- NGC 253 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC253XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the NGC 253 XMM-Newton X-Ray Point Source Catalog. NGC 253 is a local, starbursting spiral galaxy with strong X-ray emission from hot gas, as well as many point sources. The authors have conducted a spectral survey of the X-ray population of NGC 253 using a deep XMM-Newton observation. NGC 253 only accounts for ~20 per cent of the XMM-Newton EPIC field of view, allowing them to identify ~ 100 X-ray sources that are unlikely to be associated with NGC 253. Hence, they were able to make a direct estimate of contamination from, for example, foreground stars and background galaxies. X-ray luminosity functions (XLFs) of galaxy populations are often used to characterize their properties. There are several methods for estimating the luminosities of X-ray sources with few photons. The authors have obtained spectral fits for the brightest 140 sources in the 2003 XMM-Newton observation of NGC 253, and compare the best-fitting luminosities of those 69 non-nuclear sources associated with NGC 253 with luminosities derived using other methods. They find the luminosities obtained from these various methods to vary systematically by a factor of up to 3 for the same data; this is largely due to differences in absorption. The authors therefore conclude that assuming Galactic absorption is probably unwise; rather, one should measure the absorption for the population. In addition, they find that standard estimations of the background contribution to the X-ray sources in the field are insufficient, and that the background active galactic nuclei (AGN) may be systematically more luminous than previously expected. However, the excess in their measured AGN XLF with respect to the expected XLF may be due to an as yet unrecognized population associated with NGC253. XMM-Newton observations are susceptible to periods of high background levels, caused by increased flux of solar particles. The authors screened the data from each of the EPIC cameras (MOS1, MOS2 and pn), to remove flaring intervals. This process resulted in ~ 46 ks of good time for the pn and ~ 69 ks for the MOS cameras. The authors combined the cleaned MOS and pn data, and ran the source detection algorithm provided with the XMM-Newton data analysis suite SAS version 7.0. They accepted sources with maximum-likelihood detections > 10 (equivalent to 4 sigma). This table was created by the HEASARC in April 2009 based on the electronic version of Tables A1 and A2 from the paper which were obtained from the CDS (their catalog J/MNRAS/388/849 files tablea1.dat and tablea2.dat). This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc752xmm
- Title:
- NGC 752 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC752XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table provides a list of X-ray sources detected in a ~50 ks XMM-Newton X-ray observation of the open cluster NGC 752. For the sources with 2MASS counterparts, the values of their magnitudes in the J, H and K bands are also given. Additionally, for the sources with a Chandra counterpart (within a search radius of 5 arcsec), the values of their Chandra source number (as given in the related Browse table NGC752CXO) are also given. Very little is known about the evolution of stellar activity between the ages of the Hyades (0.8 Gyr) and the Sun (4.6 Gyr). To gain information on the typical level of coronal activity at a star's intermediate age, the authors have studied the X-ray emission from stars in the 1.9 Gyr-old open cluster NGC 752. They analyzed a ~ 140 ks Chandra observation of NGC 752 and a ~50 ks XMM-Newton observation of the same cluster. They detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field of view are detected in the X-ray observation. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived. These data indicate that, at an age of 1.9 Gyr, the typical X-ray luminosity L<sub>x</sub> of the cluster members with masses of 0.8 to 1.2 solar masses is 1.3 x 10<sup>28</sup> erg s<sup>-1</sup>, which is approximately a factor of 6 times less intense than that observed in the younger Hyades. Given that L<sub>x</sub> is proportional to the square of a star's rotational rate, the median L<sub>x</sub> of NGC 752 is consistent, for t >= 1 Gyr, with a decaying rate in rotational velocities v<sub>rot</sub> ~ t<sup>-alpha</sup> with alpha ~ 0.75, steeper than the Skumanich relation (alpha ~ 0.5) and significantly steeper than that observed between the Pleiades and the Hyades (where alpha <0.3), suggesting that a change in the rotational regimes of the stellar interiors is taking place at an age of ~ 1 Gyr. NGC 752 was observed for 49 ks by the XMM-Newton EPIC camera on February 5, 2003 starting at 23:29:25 UT, and the nominal pointing was towards J2000.0 RA and Declination of (01:57:38, +37:47:60), thus the XMM-Newton field-of-view (FOV) includes the Chandra FOV. For the source detection, the authors used the PWXDETECT code developed at Palermo Observatory and derived from the analogous Chandra PWDETECT code based on wavelet transform analysis. This allows the three EPIC exposures (PN, MOS1 and MOS2) to be combined in order to gain a deeper sensitivity with respect to the source detection based on single images. There were 145 point sources detected in the energy band 0.5 - 2.0 keV. An extended source (not listed in this present table), very likely a galaxy cluster, is also visible in the EPIC data. The authors searched for 2MASS counterparts to the XMM-Newton sources using a search radius of 5 arcsec and found a counterpart for 38 sources. As for the Chandra data, all sources with a visible counterpart from DLM94 have also a 2MASS counterpart, so this leaves 15 XMM-Newton sources with a 2MASS counterpart and no counterpart in Daniel et al. (1994, PASP, 106, 281); of these, 3 were also detected by Chandra; of the other 12, 10 are outside the Chandra FOV, while two are within it (XMM-Newton sources 58 and 65). Source 65 was caught by XMM-Newton during the decay phase of a flare, which explains why it is not detected in the Chandra data. For source 58 there is no immediate explanation for this, since the light curve does not show evidence of a flare. No additional near-IR counterpart to the XMM-Newton sources was found within the Point Source Reject Table of the 2MASS Extended Mission. This table was created by the HEASARC in October 2008 based on the electronic version of Table 7 from the reference paper which was obtained from the CDS website, i.e., their catalog J/A+A/490/113 file table7.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2547xmm
- Title:
- NGC 2547 XMM-Newton X-Ray Point Source Catalog
- Short Name:
- NGC2547XMM
- Date:
- 07 Mar 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a list of point sources detected by XMM-Newton EPIC in a pointing towards the young open cluster NGC 2547, made in order to allow the authors to characterize coronal activity in solar-type stars, and stars of lower mass, at an age of 30 Myr. X-ray emission was seen from stars at all spectral types, peaking among G stars at luminosities (0.3 - 3 keV) of L<sub>x</sub> ~= 10<sup>30.5</sup> erg/s and declining to L<sub>x</sub> <= 10<sup>29</sup> erg/s among M stars with masses >=0.2 solar masses. Coronal spectra show evidence for multi-temperature differential emission measures and low coronal metal abundances of Z~= 0.3. Most of the solar-type stars in NGC 2547 exhibit saturated or even supersaturated X-ray activity levels. The median levels of L<sub>x</sub> and L<sub>x</sub>/L<sub>bol</sub> in the solar-type stars of NGC 2547 are very similar to those in T-Tauri stars of the Orion Nebula cluster (ONC), but an order of magnitude higher than in the older Pleiades. The spread in X-ray activity levels among solar-type stars in NGC 2547 is much smaller than in older or younger clusters. This table contains the properties of those X-ray sources which are correlated with optical cluster members (see Section 2.2 of the reference paper for details on the correlation procedure that was adopted), as well as the properties of those X-ray sources which are uncorrelated with any optical cluster members. The table lists the cross-identifications with optical catalogs for the candidate cluster sources along with their X-ray luminosities and X-ray to bolometric flux ratios, as well as the correlations between cluster members which were detected by XMM-Newton and those detected 7 years earlier by the ROSAT HRI instrument, along with the X-ray luminosities and flux ratios as determined by the HRI. This table was created by the HEASARC in February 2007 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/367/781">CDS Catalog J/MNRAS/367/781</a> files table1.dat, table2.dat, table3.dat and table7.dat. This is a service provided by NASA HEASARC .