- ID:
- ivo://CDS.VizieR/J/A+A/454/895
- Title:
- Abundances of 26 barium stars. I.
- Short Name:
- J/A+A/454/895
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The abundances for Na, Al, alpha-, iron-peak, s-, and r-elements have been derived by using spectrum synthesis for a sample of 26 barium stars, including dwarf barium stars. High-resolution spectra were obtained with the FEROS spectrograph at the ESO-1.52m Telescope, along with photometric data with Fotrap at the Zeiss telescope at the LNA.
« Previous |
1 - 10 of 12
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/454/917
- Title:
- Abundances of 26 barium stars. II.
- Short Name:
- J/A+A/454/917
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The aim of this work is to quantify the contributions of the s-, r-, and p-processes for the total abundance of heavy elements from abundances derived for a sample of 26 barium stars. The abundances of the sample stars were compared to those of normal stars, thus identifying the fraction relative to the main component of the s-process s. The fittings of the sigmaN curves (neutron-capture cross-section times abundance, plotted against atomic mass number) for the sample stars suggest that the material from the companion asymptotic giant branch star had approximately the solar isotopic composition as concerns fractions of abundances relative to the s-process main component.
- ID:
- ivo://CDS.VizieR/J/A+A/533/A51
- Title:
- Abundances of 12 metal-rich barium stars
- Short Name:
- J/A+A/533/A51
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determined the atmospheric parameters and abundance pattern for a sample of metal-rich barium stars. We used high resolution optical spectroscopy. Atmospheric parameters and abundances were determined using the local thermodynamic equilibrium atmosphere models of Kurucz and the spectral analysis code MOOG. We show that the stars have enhancement factors, [s/Fe], from 0.25 to 1.16. Their abundance pattern of Na, Al, {alpha}-elements and iron group elements as well as their kinematical properties are similar to the characteristics of the other metal rich and super metal-rich stars already analyzed. We conclude that metal rich barium stars do not belong to the bulge population. We also show that metal rich barium stars are useful targets to probe the s-process enrichment in high metallicity environments.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A127
- Title:
- Barium and related stars and WD companions
- Short Name:
- J/A+A/626/A127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper provides long-period and revised orbits for barium and S stars adding to previously published ones. The sample of barium stars with strong anomalies comprise all such stars present in the Lu et al. catalogue. We find orbital motion for all barium and extrinsic S stars monitored. We obtain the longest period known so far for a spectroscopic binary involving an S star, namely 57 Peg with a period of the order of 100-500yr. We present the mass distribution for the barium stars, which ranges from 1 to 3M_{sun}_, with a tail extending up to 5M_{sun}_ in the case of mild barium stars. This high-mass tail comprises mostly high-metallicity objects ([Fe/H]>=-0.1). Mass functions are compatible with WD companions and we derive their mass distribution which ranges from 0.5 to 1 Msun. Using the initial - final mass relationship established for field WDs, we derived the distribution of the mass ratio q'=M_AGB,ini_/M_Ba_ (where M_AGB,ini_ is the WD progenitor initial mass, i.e., the mass of the system former primary component) which is a proxy for the initial mass ratio. It appears that the distribution of q' is highly non uniform, and significantly different for mild and strong barium stars, the latter being characterized by values mostly in excess of 1.4, whereas mild barium stars occupy the range 1-1.4. We investigate as well the correlation between abundances, orbital periods, metallicities, and masses (barium star and WD companion). The 105 orbits of post-mass-transfer systems presented in this paper pave the way for a comparison with binary-evolution models.
- ID:
- ivo://CDS.VizieR/J/A+A/608/A100
- Title:
- CMD and mass distribution of Ba stars
- Short Name:
- J/A+A/608/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- With the availability of parallaxes provided by the Tycho-Gaia Astrometric Solution, it is possible to construct the Hertzsprung-Russell diagram (HRD) of barium and related stars with unprecedented accuracy. A direct result from the derived HRD is that subgiant CH stars occupy the same region as barium dwarfs, contrary to what their designations imply. By comparing the position of barium stars in the HRD with STAREVOL evolutionary tracks, it is possible to evaluate their masses, provided the metallicity is known. We used an average metallicity [Fe/H]=-0.25 and derived the mass distribution of barium giants. The distribution peaks around 2.5M_{sun}_, with a tail at higher masses up to 4.5M_{sun}_. This peak is seen as well in the mass distribution of a sample of normal K and M giants used for comparison and is associated with stars located in the red clump. When we compare these mass distributions, we see a deficit of low-mass (1-2M_{sun}_) barium giants. This is probably because low-mass stars reach large radii at the tip of the red giant branch, which may have resulted in an early binary interaction. Among barium giants, the high-mass tail is however dominated by stars with a barium index (based on a visual inspection of the barium spectral line) less than unity, i.e., with a very moderate barium line strength. We believe that these stars are not genuine barium giants, but rather bright giants (or supergiants) where the barium lines are strengthened because of a positive luminosity effect. Moreover, contrary to previous claims, we do not see differences between the mass distributions of mild and strong barium giants.
- ID:
- ivo://CDS.VizieR/J/MNRAS/476/724
- Title:
- EW of 4 primary stars and the Sun
- Short Name:
- J/MNRAS/476/724
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51M_{sun}_) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.
- ID:
- ivo://CDS.VizieR/J/A+A/372/245
- Title:
- Infrared properties of barium stars
- Short Name:
- J/A+A/372/245
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a systematic survey for IRAS associations of barium stars. A total of 155 associations were detected, and IRAS low-resolution spectra exist for 50 barium stars. We use different color-color diagrams from the visual band to 60{mu}m, relations between these colors and the spectral type, the barium intensity, and the IRAS low-resolution spectra to discuss physical properties of barium stars in the infrared. It is confirmed that most barium stars have infrared excesses in the near infrared. However, a new result of this work is that most barium stars have no excesses in the far infrared. This fact may imply that infrared excesses of barium stars are mainly due to the re-emission of energy lost from the Bond-Neff depression. It is also shown that the spectral type and the barium intensity of barium stars are not correlated with infrared colors, but may be correlated with V-K color.
- ID:
- ivo://CDS.VizieR/J/AJ/151/13
- Title:
- LAMOST-Kepler MKCLASS spectral classification
- Short Name:
- J/AJ/151/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The LAMOST-Kepler project was designed to obtain high-quality, low-resolution spectra of many of the stars in the Kepler field with the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic telescope. To date 101086 spectra of 80447 objects over the entire Kepler field have been acquired. Physical parameters, radial velocities, and rotational velocities of these stars will be reported in other papers. In this paper we present MK spectral classifications for these spectra determined with the automatic classification code MKCLASS. We discuss the quality and reliability of the spectral types and present histograms showing the frequency of the spectral types in the main table organized according to luminosity class. Finally, as examples of the use of this spectral database, we compute the proportion of A-type stars that are Am stars, and identify 32 new barium dwarf candidates.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A128
- Title:
- Main-sequence and subgiant Barium stars
- Short Name:
- J/A+A/626/A128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Barium (Ba) dwarfs and CH subgiants are the less evolved analogues of Ba and CH giants. They are F- to G-type main-sequence stars polluted with heavy elements by their binary companions when the companion was on the asymptotic giant branch (AGB). This companion is now a white dwarf that in most cases cannot be directly detected. We present a large systematic study of 60 objects classified as Ba dwarfs or CH subgiants. Combining radial-velocity measurements from HERMES and SALT high-resolution spectra with radial-velocity data from CORAVEL and CORALIE, we determine the orbital parameters of 27 systems. We also derive their masses by comparing their location in the Hertzsprung-Russell diagram with evolutionary models. We confirm that Ba dwarfs and CH subgiants are not at different evolutionary stages, and that they have similar metallicities, despite their different names. Additionally, Ba giants appear significantly more massive than their main-sequence analogues. This is likely due to observational biases against the detection of hotter main- sequence post-mass-transfer objects. Combining our spectroscopic orbits with the Hipparcos astrometric data, we derive the orbital inclination and the mass of the WD companion for four systems. Since this cannot be done for all systems in our sample yet (but should be possible with upcoming Gaia data releases), we also analyse the mass-function distribution of our binaries. We can model this distribution with very narrow mass distributions for the two components and random orbital orientations on the sky. Finally, based on BINSTAR evolutionary models, we suggest that the orbital evolution of low-mass Ba systems can be affected by a second phase of interactions along the red giant branch of the Ba star, which impact the eccentricities and periods of the giants.
- ID:
- ivo://CDS.VizieR/J/AJ/146/39
- Title:
- Spectroscopy of NGC 5822-2 and NGC 5822-201
- Short Name:
- J/AJ/146/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, "s," with the notation [s/Fe] of 0.77+/-0.12 and 0.83+/-0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140L_{sun}_ and 76L_{sun}_, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.