- ID:
- ivo://CDS.VizieR/J/ApJS/210/25
- Title:
- Transit timing variation for 15 planetary pairs. II.
- Short Name:
- J/ApJS/210/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Following on from Paper I (Cat. J/ApJS/208/22) in this series, I report the confirmation of a further 30 planets in 15 multiple-planet systems via transit timing variations (TTVs), using the publicly available Kepler light curves (Q0-Q16). All 15 pairs are near first-order mean motion resonances, showing sinusoidal TTVs consistent with theoretically predicted periods, which demonstrate they are orbiting and interacting in the same systems. Although individual masses cannot be accurately extracted based only on TTVs (because of the well known degeneracy between mass and eccentricity), the measured TTV phases and amplitudes can still place relatively tight constraints on their mass ratios and upper limits on their masses, which confirm their planetary nature. Some of these systems (KOI-274, KOI-285, KOI-370, and KOI-2672) are relatively bright and thus suitable for further follow-up observations.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/162/55
- Title:
- 65 Transit-timing variation planets properties
- Short Name:
- J/AJ/162/55
- Date:
- 16 Mar 2022 00:18:00
- Publisher:
- CDS
- Description:
- Transit surveys have revealed a significant population of compact multiplanet systems, containing several sub-Neptune-mass planets on close-in, tightly-packed orbits. These systems are thought to have formed through a final phase of giant impacts, which would tend to leave systems close to the edge of stability. Here, we assess this hypothesis, comparing observed eccentricities in systems exhibiting transit-timing variations versus the maximum eccentricities compatible with long-term stability. We use the machine-learning classifier SPOCK (Tamayo et al.) to rapidly classify the stability of numerous initial configurations and hence determine these stability limits. While previous studies have argued that multiplanet systems are often maximally packed, in the sense that they could not host any additional planets, we find that the existing planets in these systems have measured eccentricities below the limits allowed by stability by a factor of 2-10. We compare these results against predictions from the giant-impact theory of planet formation, derived from both N-body integrations and theoretical expectations that, in the absence of dissipation, the orbits of such planets should be distributed uniformly throughout the phase space volume allowed by stability. We find that the observed systems have systematically lower eccentricities than this scenario predicts, with a median eccentricity about four times lower than predicted. This suggests that, if these systems formed through giant impacts, then some dissipation must occur to damp their eccentricities. This may occur through interactions with the natal gas disk or a leftover population of planetesimals, or over longer timescales through the coupling of tidal and secular processes.
- ID:
- ivo://CDS.VizieR/J/AJ/161/202
- Title:
- Transit timing variations of Kepler-90g and h
- Short Name:
- J/AJ/161/202
- Date:
- 10 Dec 2021
- Publisher:
- CDS
- Description:
- Exoplanet transit-timing variations (TTVs) caused by gravitational forces between planets can be used to determine planetary masses and orbital parameters. Most of the observed TTVs are small and sinusoidal in time, leading to degeneracies between the masses and orbital parameters. Here we report a TTV analysis of Kepler-90g and Kepler-90h, which exhibit large TTVs up to 25hr. With optimization, we find a unique solution that allows us to constrain all of the orbital parameters. The best-fit masses for Kepler-90g and 90h are 15.0_-0.8_^+0.9^M{Earth} (Earth mass) and 203_-5_^+5^M_{Earth}, respectively, with Kepler-90g having an unusually low apparent density of 0.15{+/-}0.05g/cm^3^. The uniqueness of orbital parameter solution enables a long-term dynamical integration, which reveals that although their periods are close to 2:3 orbital resonance, they are not locked in resonance, and the configuration is stable over billions of years. The dynamical history of the system suggests that planet interactions are able to raise the eccentricities and break the resonant lock after the initial formation.
- ID:
- ivo://CDS.VizieR/J/AJ/154/5
- Title:
- Transit timing variations of 145 Kepler planets
- Short Name:
- J/AJ/154/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We conduct a uniform analysis of the transit timing variations (TTVs) of 145 planets from 55 Kepler multiplanet systems to infer planet masses and eccentricities. Eighty of these planets do not have previously reported mass and eccentricity measurements. We employ two complementary methods to fit TTVs: Markov chain Monte Carlo simulations based on N-body integration, and an analytic fitting approach. Mass measurements of 49 planets, including 12 without previously reported masses, meet our criterion for classification as robust. Using mass and radius measurements, we infer the masses of planets' gaseous envelopes for both our TTV sample and transiting planets with radial velocity observations. Insight from analytic TTV formulae allows us to partially circumvent degeneracies inherent to inferring eccentricities from TTV observations. We find that planet eccentricities are generally small, typically a few percent, but in many instances are nonzero.
- ID:
- ivo://CDS.VizieR/J/AJ/159/239
- Title:
- Transmission Spectroscopy Metric of exoplanets
- Short Name:
- J/AJ/159/239
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight Microvariability and Oscillations of Stars Telescope (MOST) transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1-1.7{mu}m reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O~>0.8) and metallicities of ~>100 solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295{+/-}0.000005, with a best-fit transit time center at T0=2456361.80690{+/-}0.00038(BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34{+/-}2days) and stellar activity cycle (9.6yr) of the host star HD97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000K and with sizes between 1R_{Earth}_ and 4R_{Earth}_. We find that at least a third of small planets cooler than 1000K can be well characterized using James Webb Space Telescope, and of those, HD97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization.
- ID:
- ivo://CDS.VizieR/J/MNRAS/497/3790
- Title:
- TRAPPIST-South UCD Transit Survey
- Short Name:
- J/MNRAS/497/3790
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 - to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 R_{Earth}_ and the orbital period between 1.4 and 1.8d.
- ID:
- ivo://CDS.VizieR/J/AJ/154/115
- Title:
- Travel times of stars within about 300 lt-yr
- Short Name:
- J/AJ/154/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New means of interstellar travel are now being considered by various research teams, assuming lightweight spaceships to be accelerated via either laser or solar radiation to a significant fraction of the speed of light (c). We recently showed that gravitational assists can be combined with the stellar photon pressure to decelerate an incoming lightsail from Earth and fling it around a star or bring it to rest. Here, we demonstrate that photogravitational assists are more effective when the star is used as a bumper (i.e., the sail passes "in front of" the star) rather than as a catapult (i.e., the sail passes "behind" or "around" the star). This increases the maximum deceleration at {alpha} Cen A and B and reduces the travel time of a nominal graphene-class sail (mass-to-surface ratio 8.6*10^-4^g/m^2^) from 95 to 75 years. The maximum possible velocity reduction upon arrival depends on the required deflection angle from {alpha} Cen A to B and therefore on the binary's orbital phase. Here, we calculate the variation of the minimum travel times from Earth into a bound orbit around Proxima for the next 300 years and then extend our calculations to roughly 22000 stars within about 300lt-yr. Although {alpha} Cen is the most nearby star system, we find that Sirius A offers the shortest possible travel times into a bound orbit: 69 years assuming 12.5% c can be obtained at departure from the solar system. Sirius A thus offers the opportunity of flyby exploration plus deceleration into a bound orbit of the companion white dwarf after relatively short times of interstellar travel.
- ID:
- ivo://CDS.VizieR/J/ApJ/893/27
- Title:
- TRENDS high-contrast imaging survey. VIII.
- Short Name:
- J/ApJ/893/27
- Date:
- 19 Jan 2022 00:39:50
- Publisher:
- CDS
- Description:
- The physical properties of faint stellar and substellar objects often rely on indirect, model-dependent estimates. For example, the masses of brown dwarfs are usually inferred using evolutionary models, which are age dependent and have yet to be properly calibrated. With the goal of identifying new benchmark objects to test low-mass stellar and substellar models, we have carried out a comprehensive adaptive optics survey as part of the TaRgetting bENchmark-objects with the Doppler Spectroscopy (TRENDS) high-contrast imaging program. Using legacy radial velocity measurements from the High Resolution Echelle Spectrometer at Keck, we have identified several dozen stars that show long-term Doppler accelerations. We present follow-up high-contrast observations from the campaign and report the discovery of 31 comoving companions, as well as 11 strong candidate companions, to solar-type stars with well-determined parallax and metallicity values. Benchmark objects of this nature lend themselves to orbit determinations, dynamical mass estimates, and independent compositional assessment. This compendium of benchmark objects will serve as a convenient test group to substantiate theoretical evolutionary and atmospheric models near the hydrogen fusing limit.
14439. TrES-1 equivalent widths
- ID:
- ivo://CDS.VizieR/J/AJ/131/2274
- Title:
- TrES-1 equivalent widths
- Short Name:
- J/AJ/131/2274
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed chemical abundance analysis of the parent star of the transiting extrasolar planet TrES-1. Based on high-resolution Keck HIRES and Hobby-Eberly Telescope HRS spectra, we have determined abundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba).
- ID:
- ivo://CDS.VizieR/J/ApJ/793/62
- Title:
- Triangulum-Andromeda stellar properties
- Short Name:
- J/ApJ/793/62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructures in the distance range 20-30 kpc, and the relation of these features to each other, if any, remains unclear. An exploration using Two Micron All Sky Survey (2MASS) photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. (2004ApJ...615..732R) spanning the range 100{deg}<l<160{deg} and -50{deg}<b<-15{deg}, but, in addition, a second, brighter and more densely populated sequence. These sequences are likely associated with the distinct main sequences (MSs) discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. (2007ApJ...668L.123M) in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter red giant branch (RGB)/asymptotic giant branch sequence of Rocha-Pinto et al. Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MS turn-off features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of ~15-21 kpc), whereas the fainter sequence (TriAnd2) is older (10-12 Gyr) and at an estimated distance of ~24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages.