- ID:
- ivo://CDS.VizieR/J/ApJ/859/73
- Title:
- Variability of RSGs in M31 from the iPTF survey
- Short Name:
- J/ApJ/859/73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Most massive stars end their lives as red supergiants (RSGs), a short-lived evolutionary phase when they are known to pulsate with varying amplitudes. The RSG period-luminosity (PL) relation has been measured in the Milky Way, the Magellanic Clouds and M33 for about 120 stars in total. Using over 1500 epochs of R-band monitoring from the Palomar Transient Factory survey over a five-year period, we study the variability of 255 spectroscopically cataloged RSGs in M31. We find that all RGSs brighter than M_K_~-10mag (log(L/L_{sun}_)>4.8) are variable at {Delta}m_R_>0.05mag. Our period analysis finds 63 with significant pulsation periods. Using the periods found and the known values of M_K_ for these stars, we derive the RSG PL relation in M31 and show that it is consistent with those derived earlier in other galaxies of different metallicities. We also detect, for the first time, a sequence of likely first-overtone pulsations. Comparison to stellar evolution models from MESA confirms the first-overtone hypothesis and indicates that the variable stars in this sample have 12M_{sun}_<M<24M_{sun}_. As these RSGs are the immediate progenitors to Type II-P core-collapse supernovae (SNe), we also explore the implication of their variability in the initial-mass estimates for SN progenitors based on archival images of the progenitors. We find that this effect is small compared to the present measurement errors.
« Previous |
91 - 94 of 94
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/844/40
- Title:
- Variable stars in M31 and M33. V. HR diagram
- Short Name:
- J/ApJ/844/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present HR diagrams for the massive star populations in M31 and M33, including several different types of emission-line stars: the confirmed luminous blue variables (LBVs), candidate LBVs, B[e] supergiants, and the warm hypergiants. We estimate their apparent temperatures and luminosities for comparison with their respective massive star populations and evaluate the possible relationships of these different classes of evolved, massive stars, and their evolutionary state. Several of the LBV candidates lie near the LBV/S Dor instability strip that supports their classification. Most of the B[e] supergiants, however, are less luminous than the LBVs. Many are very dusty with the infrared flux contributing one-third or more to their total flux. They are also relatively isolated from other luminous OB stars. Overall, their spatial distribution suggests a more evolved state. Some may be post-RSGs (red supergiants) like the warm hypergiants, and there may be more than one path to becoming a B[e] star. There are sufficient differences in the spectra, luminosities, spatial distribution, and the presence or lack of dust between the LBVs and B[e] supergiants to conclude that one group does not evolve into the other.
- ID:
- ivo://CDS.VizieR/J/A+A/526/A45
- Title:
- WINGS-SPE II catalog
- Short Name:
- J/A+A/526/A45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The WIde-field Nearby Galaxy clusters Survey (WINGS) is a project whose primary goal is to study the galaxy populations in clusters in the local universe, and of the influence of environment on their stellar populations. This survey has provided the astronomical community with a high quality set of photometric and spectroscopic data for 77 and 48 nearby galaxy clusters, respectively. We present the catalog containing the properties of galaxies observed by the wings spectroscopic survey, which were derived using stellar populations synthesis modelling approach. We also check the consistency of our results with other data in the literature. Using a spectrophotometric model that reproduces the main features of observed spectra by summing the theoretical spectra of simple stellar populations of different ages, we derive the stellar masses, star formation histories, average age and dust attenuation of galaxies in our sample. ~5300 spectra were analyzed with spectrophotometric techniques, and this allowed to derive the star formation history, stellar masses and ages, and extinction for the wings spectroscopic sample that we present in this paper. The comparison with the total mass values of the same galaxies derived by other authors based on sdss data, confirms the reliability of the adopted methods and data.
- ID:
- ivo://CDS.VizieR/J/ApJS/245/17
- Title:
- X-shaped radio galaxies from FIRST
- Short Name:
- J/ApJS/245/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 290 "winged" or X-shaped radio galaxies (XRGs) extracted from the latest (2014 December 17) data release of the "Very Large Array Faint Images of the Radio Sky at Twenty centimeter". We have combined these radio images with their counterparts in the TIFR GMRT sky survey at 150MHz, in an attempt to identify any low surface brightness radio emission present in these sources. This has enabled us to assemble a sample of 106 "strong" XRG candidates and 184 "probable" XRG candidates whose XRG designation needs to be verified by further observations. The present sample of 290 XRG candidates is almost twice as large as the number of XRGs currently known. Twenty-five of our 290 XRG candidates (9 "strong" and 16 "probable") are identified as quasars. Double-peaked narrow emission lines are seen in the optical spectra of three of the XRG candidates (two "strong" and one "probable"). Nearly 90% of the sample is located in the FR II domain of the Owen-Ledlow diagram. A few of the strong XRG candidates have a rather flat radio spectrum (spectral index {alpha} flatter than -0.3) between 150MHz and 1.4GHz, or between 1.4 and 5GHz. Since this is not expected for lobe-dominated extragalactic radio sources (like nearly all known XRGs), these sources are particularly suited for follow-up radio imaging and near-simultaneous measurement of the radio spectrum.