- ID:
- ivo://CDS.VizieR/J/A+A/617/A63
- Title:
- Star formation in the Vela Molecular Ridge
- Short Name:
- J/A+A/617/A63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Most stars born in clusters and recent results suggest that star formation (SF) preferentially occurs in subclusters. Studying the morphology and SF history of young clusters is crucial to understanding early SF. We identify the embedded clusters of young stellar objects (YSOs) down to M stars, in the HII regions RCW33, RCW32 and RCW27 of the Vela Molecular Ridge. Our aim is to characterise their properties, such as morphology and extent of the clusters in the three HII regions, derive stellar ages and the connection of the SF history with the environment. Through public photometric surveys such as Gaia, VPHAS, 2MASS and Spitzer/GLIMPSE, we identify YSOs with IR, Halpha and UV excesses, as signature of circumstellar disks and accretion. In addition, we implement a method to distinguish M dwarfs and giants, by comparing the reddening derived in several optical/IR color-color diagrams assuming suitable theoretical models. Since this diagnostic is sensitive to stellar gravity, the procedure allows us to identify pre-main sequence stars. We find a large population of YSOs showing signatures of circumstellar disks with or without accretion. In addition, with the new technique of M-type star selection, we find a rich population of young M stars with a spatial distribution strongly correlated to the more massive population. We find evidence of three young clusters, with different morphology. In addition, we identify field stars falling in the same region, by securely classifying them as giants and foreground MS stars. We identify the embedded population of YSOs, down to about 0.1M_{sun}_, associated with the HII regions RCW33, RCW32 and RCW27 and the clusters Vela T2, Cr197 and Vela T1, respectively, showing very different morphologies. Our results suggest a decreasing SF rate in Vela T2 and triggered SF in Cr197 and Vela T1.
« Previous |
41 - 48 of 48
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/712/925
- Title:
- Transition circumstellar disks in Ophiuchus
- Short Name:
- J/ApJ/712/925
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d~125pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40M_JUP_ and accretion rates ranging from <10^-11^ to 10^-7^M_{sun}_/yr, but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5M_JUP_) and negligible accretion (<10^-11^M_{sun}_/yr), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10^-3^ and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.
- ID:
- ivo://CDS.VizieR/J/A+A/632/A46
- Title:
- TW Hydrae association with X-shooter
- Short Name:
- J/A+A/632/A46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Measurements of the protoplanetary disk frequency in young star clusters of different ages indicate disk lifetimes <10Myr. However, our current knowledge of how mass accretion in young stars evolves over the lifespans of disks is subject to many uncertainties, especially at the lower stellar masses. In this study, we investigate ongoing accretion activity in the TW Hydrae association (TWA), the closest association of pre-main sequence stars with active disks. The age (8-10Myr) and the proximity of the TWA render it an ideal target to probe the final stages of disk accretion down to brown dwarf masses. The study is based on homogeneous spectroscopic data from 300nm to 2500nm, obtained synoptically with X-shooter, which allows simultaneous derivation of individual extinction, stellar parameters, and accretion parameters for each star. The continuum excess emission diagnostics is used to estimate the accretion luminosities and mass accretion rates of our disk-bearing targets, and the shape and intensity of permitted and forbidden emission lines are analyzed to probe the physics of the star-disk interaction environment.
- ID:
- ivo://CDS.VizieR/J/A+A/581/A66
- Title:
- UV variability and accretion in NGC 2264
- Short Name:
- J/A+A/581/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3Myr).
- ID:
- ivo://CDS.VizieR/J/A+A/648/A121
- Title:
- X-ray activity and accretion in the ONC
- Short Name:
- J/A+A/648/A121
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Recent works highlight the importance of stellar X-rays on the evolution of the circumstellar disks of young stellar objects, especially for disk photoevaporation. A signature of this process may be seen in the so far tentatively observed dependence of stellar accretion rates on X-ray luminosities. According to models of X-ray driven photoevaporation, stars with higher X-ray luminosities should show lower accretion rates, on average, in a sample with similar masses and ages. To this aim, we have analyzed X-ray properties of young stars in the Orion Nebula Cluster determined with Chandra during the COUP observation as well as accretion data obtained from the photometric catalog of the HST Treasury Program. With these data, we have performed a statistical analysis of the relation between X-ray activity and accretion rates using partial linear regression analysis. The initial anticorrelation found with a sample of 332 young stars is considerably weaker compared to previous studies. However, excluding flaring activity or limiting the X-ray luminosity to the soft band (0.5-2.0keV) leads to a stronger anticorrelation, which is statistically more significant. Furthermore, we have found a weak positive correlation between the higher component of the plasma temperature gained in the X-ray spectral fitting and the accretion rates, indicating that the hardness of the X-ray spectra may influence the accretion process. There is evidence for a weak anticorrelation, as predicted by theoretical models, suggesting that X-ray photoevaporation modulates the accretion rate through the inner disk at late stages of disk evolution, leading to a phase of photoevaporation-starved accretion.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A66
- Title:
- X-ray data for 56 protoplanetary disk sources
- Short Name:
- J/A+A/625/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Consistent modeling of protoplanetary disks requires the simultaneous solution of both continuum and line radiative transfer, heating and cooling balance between dust and gas and, of course, chemistry. Such models depend on panchromatic observations that can provide a complete description of the physical and chemical properties and energy balance of protoplanetary systems. Along these lines we present a homogeneous, panchromatic collection of data on a sample of 85 T Tauri and Herbig Ae objects for which data cover a range from X-rays to centimeter wavelengths. Datasets consist of photometric measurements, spectra, along with results from the data analysis such as line fluxes from atomic and molecular transitions. Additional properties resulting from modeling of the sources such as disc mass and shape parameters, dust size and PAH properties are also provided for completeness. The purpose of this data collection is to provide a solid base that can enable consistent modeling of the properties of protoplan- etary disks. To this end, we performed an unbiased collection of publicly available data that were combined to homogeneous datasets adopting consistent criteria. Targets were selected based on both their properties but also on the availability of data. Data from more than 50 different telescopes and facilities were retrieved and combined in homogeneous datasets directly from public data archives or after being extracted from more than 100 published articles. X-ray data for a subset of 56 sources represent an exception as they were reduced from scratch and are presented here for the first time. Compiled datasets along with a subset of continuum and emission-line models are stored in a dedicated database and distributed through a publicly accessible online system. All datasets contain metadata descriptors that allow to backtrack them to their original resources. The graphical user interface of the online system allows the user to visually inspect individual objects but also compare between datasets and models. It also offers to the user the possibility to download any of the stored data and metadata for further processing.
47. XXL Survey. DR2
- ID:
- ivo://CDS.VizieR/IX/52
- Title:
- XXL Survey. DR2
- Short Name:
- IX/52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the second data release (DR2) of the XXL Survey, contextually with the appearance of a second A&A special issue dedicated to XXL. This intermediate release includes the following catalogues and data: The X-ray point source catalogue (3XLSS) and the associated multiwavelength catalogues in the XXL-N and XXL-s areas (XXL paper XXVII). The same paper also provides the list of XMM pointings used, and a supplementary catalogue of redshifts obtained with the AAOmega spectrograph in the XXL-S area. The XXL-365-GC galaxy cluster catalogue (XXL paper XX) with the complete subset of clusters for which the selection function is well determined plus all X-ray clusters which are, to date, spectroscopically confirmed. The ATCA 2.1 GHz radio source catalogue in the XXL-S area (XXL paper XXVIII), together with the catalogue of ther optical and near infrared counterparts (XXL paper XXVI). The GMRT 610 MHz radio source catalogue in the XXL-N area (XXL paper XXIX). FITS images of the XXL-North field: continuum radio mosaic from observations with the Giant Meterwave Radio Telescope (GMRT) at 610MHz, and the corresponding noise map. A complete spectrophotometric sample of galaxies within X-ray detected, optically spectroscopically confirmed groups and clusters (G&C), including also field objects, in the XXL-N area (XXL paper XXII). The list of brightest cluster galaxies (BCGs) in the XXL-N area (XXL paper XXVIII). FITS images of the two radio galaxies described in XXL paper XXXIV. ATCA XXL-S source classification data (XXL paper XXXVI) http://sci.esa.int/xmm-newton/60686-tracing-the-universe-x-ray-survey-\ supports-standard-cosmological-model/ List of XXL DR2 papers: XVI. The clustering of X-ray selected galaxy clusters at z~0.3 XVII. X-ray and Sunyaev-Zel'dovich properties of the redshift 2.0 galaxy cluster XLSSC 122 XVIII. ATCA 2.1 GHz radio source catalogue and source counts for the XXL-South field XIX. A realistic population of simulated X-ray AGN: Comparison of models with observations XX. The 365 cluster catalogue XXI. The environment and clustering of X-ray AGN in the XXL-South field XXII. The XXL-North spectrophotometric sample and galaxy stellar mass function in X-ray detected groups and clusters XXIII. The mass scale of XXL clusters from ensemble spectroscopy XXIV. The final detection pipeline XXV. Cosmological analysis of the C1 cluster number counts XXVI. Optical and near infrared identification of the ATCA 2.1 GHz radio sources in the XXL-S field XXVII. The 3XLSS point source catalogue XXVIII. Galaxy luminosity functions of the XXL-N clusters XXIX. GMRT 610 MHz continuum observations XXX. Characterisation of the XLSSsC N01 supercluster and analysis of the galaxy stellar populations XXXI. Classification and host galaxy properties of 2.1 GHz ATCA XXL-S radio sources XXXII. Spatial clustering of the XXL-S AGN XXXIII. Chandra constraints on the AGN contamination of z > 1 XXL galaxy clusters XXXIV. Double irony in XXL-North. A tale of two radio galaxies in a supercluster at z = 0.14 XXXV. The role of cluster mass in AGN activity XXXVI. Evolution and black hole feedback of high-excitation and low-excitation radio galaxies in XXL-S
- ID:
- ivo://CDS.VizieR/J/ApJS/207/5
- Title:
- YSOs in LDN 1641 with Hectochelle spectra
- Short Name:
- J/ApJS/207/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M_*_/M_{sun}_){approx}-0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.