- ID:
- ivo://CDS.VizieR/J/ApJ/728/26
- Title:
- QSO selection based on photometric variability
- Short Name:
- J/ApJ/728/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We develop a method for separating quasars from other variable point sources using Sloan Digital Sky Survey (SDSS) Stripe 82 light-curve data for ~10000 variable objects. To statistically describe quasar variability, we use a damped random walk (DRW) model parametrized by a damping timescale, {tau}, and an asymptotic amplitude (structure function), SF_{infinite}_. With the aid of an SDSS spectroscopically confirmed quasar sample, we demonstrate that variability selection in typical extragalactic fields with low stellar density can deliver complete samples with reasonable purity (or efficiency, E). Compared to a selection method based solely on the slope of the structure function, the inclusion of the {tau} information boosts E from 60% to 75% while maintaining a highly complete sample (98%) even in the absence of color information. For a completeness of C=90%, E is boosted from 80% to 85%. Conversely, C improves from 90% to 97% while maintaining E=80% when imposing a lower limit on {tau}. With the aid of color selection, the purity can be further boosted to 96%, with C=93%. Hence, selection methods based on variability will play an important role in the selection of quasars with data provided by upcoming large sky surveys, such as Pan-STARRS and the Large Synoptic Survey Telescope (LSST). In summary, given an adequate survey cadence, photometric variability provides an even better method than color selection for separating quasars from stars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/156/82
- Title:
- Radial velocity characterization of TESS planets
- Short Name:
- J/AJ/156/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) will conduct a two-year wide-field survey searching for transiting planets around bright stars. Many TESS discoveries will be amenable to mass characterization via ground-based radial velocity measurements with any of a growing suite of existing and anticipated velocimeters in the optical and near-infrared. In this study we present an analytical formalism to compute the number of radial velocity (RV) measurements - and hence the total observing time-required to characterize RV planet masses with the inclusion of either a white or correlated noise activity model. We use our model to calculate the total observing time required to measure all TESS planet masses from the expected TESS planet yield while relying on our current understanding of the targeted stars, stellar activity, and populations of unseen planets that inform the expected RV precision. We also present specialized calculations applicable to a variety of interesting subsets of TESS planets including the characterization of 50 planets smaller than 4 Earth radii, which is expected to take as little as 60 nights of observation. However, the efficient RV characterization of such planets requires a priori knowledge of the "best" targets, which we argue can be identified prior to the conclusion of the TESS planet search based on our calculations. Our results highlight the comparable performance of optical and near-IR spectrographs for most planet populations except for Earths and temperate TESS planets, which are more efficiently characterized in the near-IR. Lastly, we present an online tool to the community to compute the total observing times required to detect any transiting planet using a user-defined spectrograph (RVFC; http://maestria.astro.umontreal.ca/rvfc).
- ID:
- ivo://CDS.VizieR/J/ApJS/224/1
- Title:
- redMaPPer cluster catalog from DES data
- Short Name:
- J/ApJS/224/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150deg^2^ of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters with richness {lambda}>20 (roughly equivalent to M_500c_>~10^14^h_70_^-1^M_{sun}_) and 0.2<z<0.9. The DR8 catalog consists of 26311 clusters with 0.08<z<0.6, with a sharply increasing richness threshold as a function of redshift for z>~0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the {sigma}_z_/(1+z)~0.01 level for z<~0.7 , rising to ~0.02 at z~0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass-richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.
- ID:
- ivo://CDS.VizieR/J/ApJ/785/104
- Title:
- redMaPPer. I. Algorithm applied to SDSS DR8
- Short Name:
- J/ApJ/785/104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe redMaPPer, a new red sequence cluster finder specifically designed to make optimal use of ongoing and near-future large photometric surveys. The algorithm has multiple attractive features: (1) it can iteratively self-train the red sequence model based on a minimal spectroscopic training sample, an important feature for high-redshift surveys. (2) It can handle complex masks with varying depth. (3) It produces cluster-appropriate random points to enable large-scale structure studies. (4) All clusters are assigned a full redshift probability distribution P(z). (5) Similarly, clusters can have multiple candidate central galaxies, each with corresponding centering probabilities. (6) The algorithm is parallel and numerically efficient: it can run a Dark Energy Survey-like catalog in ~500 CPU hours. (7) The algorithm exhibits excellent photometric redshift performance, the richness estimates are tightly correlated with external mass proxies, and the completeness and purity of the corresponding catalogs are superb. We apply the redMaPPer algorithm to ~10000deg^2^ of SDSS DR8 data and present the resulting catalog of ~25000 clusters over the redshift range z{isin}[0.08,0.55]. The redMaPPer photometric redshifts are nearly Gaussian, with a scatter {sigma}_z_~0.006 at z~0.1, increasing to {sigma}_z_~0.02 at z~0.5 due to increased photometric noise near the survey limit. The median value for |{Delta}z|/(1+z) for the full sample is 0.006. The incidence of projection effects is low (<= 5%). Detailed performance comparisons of the redMaPPer DR8 cluster catalog to X-ray and Sunyaev-Zel'dovich catalogs are presented in a companion paper.
- ID:
- ivo://CDS.VizieR/J/ApJ/888/35
- Title:
- Redshifts of lensed systems toward RXCJ2248.7-4431
- Short Name:
- J/ApJ/888/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an iterative method to construct a freeform lens model that self-consistently reproduces the sky positions, geometrically inferred redshifts, and relative brightnesses of all multiply lensed images toward a galaxy cluster. This method is applied to the cluster RXCJ2248.7-4431 (z=0.348) from the Hubble Frontier Fields program, toward which 10 multiply lensed sources with accurate spectroscopic redshifts and 6 others with inexact photometric redshifts have been identified. Using the spectroscopically secure systems to define an initial lens model, we compute the geometric redshifts of the photometric systems. We then iterate the lens model by incorporating the photometric systems at redshifts shifted by incremental amounts toward their geometric redshifts inferred from the previous step; on convergence, we find geometric redshifts in good agreement with the spectroscopically determined redshifts, but they can depart significantly from the photometrically determined redshifts. In the final lens model, all 16 lensed sources tightly follow the cosmological form of the angular diameter distance relation. Furthermore, although they are not used as model constraints, our lens model predicts relative brightnesses between image pairs for a given set of multiply lensed images in reasonable agreement with observations, thus providing independent validation of this model.
- ID:
- ivo://CDS.VizieR/J/A+A/575/A18
- Title:
- Revising the ages of planet-hosting stars
- Short Name:
- J/A+A/575/A18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This article aims to measure the age of stars with planets (SWP) through stellar tracks and isochrones computed with the Padova & Trieste Stellar Evolutionary Code (PARSEC). We developed algorithms based on two different techniques for determining the ages of field stars: isochrone placement and Bayesian estimation. Their application to a synthetic sample of coeval stars shows the intrinsic limits of each method. For instance, the Bayesian computation of the modal age tends to select the extreme age values in the isochrones grid. Therefore, we used the isochrone placement technique to measure the ages of 317 SWP. We found that ~6% of SWP have ages lower than 0.5Gyr. The age distribution peaks in the interval [1.5, 2]Gyr, then it decreases. However, ~7% of the stars are older than 11Gyr. The Sun turns out to be a common star that hosts planets, when considering its evolutionary stage. Our SWP age distribution is less peaked and slightly shifted towards lower ages if compared with ages in the literature and based on the isochrone fit. In particular, there are no ages below 0.5Gyr in the literature.
- ID:
- ivo://CDS.VizieR/J/A+A/590/A9
- Title:
- RGB stars in Galactic GC stellar parameters
- Short Name:
- J/A+A/590/A9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. We aim to obtain homogeneous metallicities and alpha-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. We observed R~2000 spectra in the wavelength interval 456-586nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. [Fe/H], [Mg/Fe], and [alpha/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within sigma=0.08dex over the interval -2.5<[Fe/H]<0.0. Further, a comparison of previous metallicity scales with ours yields sigma<0.16dex. We also find that the distribution of [Mg/Fe] and [alpha/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters are included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, the first three clusters only had photometric metallicities previously and the available metallicity for NGC 6426 was based only on integrated spectroscopy and photometry. Two other clusters, HP 1 and NGC 6558, are confirmed as candidates for the oldest globular clusters in the Milky Way. Stellar spectroscopy in the visible at R~2000 for a large sample of globular clusters is a robust and efficient way to trace the chemical evolution of the host galaxy and to detect interesting objects for follow-up at higher-resolution and with forthcoming giant telescopes. The technique used here can also be applied to globular cluster systems in nearby galaxies with current instruments and to distant galaxies with the advent of ELTs.
158. Rotational tracks
- ID:
- ivo://CDS.VizieR/J/ApJ/776/67
- Title:
- Rotational tracks
- Short Name:
- J/ApJ/776/67
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar rotation is a strong function of both mass and evolutionary state. Missions such as Kepler and CoRoT provide tens of thousands of rotation periods, drawn from stellar populations that contain objects at a range of masses, ages, and evolutionary states. Given a set of reasonable starting conditions and a prescription for angular momentum loss, we address the expected range of rotation periods for cool field stellar populations (~0.4-2.0M_{sun}_). We find that cool stars fall into three distinct regimes in rotation. Rapid rotators with surface periods less than 10 days are either young low-mass main sequence (MS) stars, or higher mass subgiants which leave the MS with high rotation rates. Intermediate rotators (10-40 days) can be either cool MS dwarfs, suitable for gyrochronology, or crossing subgiants at a range of masses. Gyrochronology relations must therefore be applied cautiously, since there is an abundant population of subgiant contaminants. The slowest rotators, at periods greater than 40 days, are lower mass subgiants undergoing envelope expansion. We identify additional diagnostic uses of rotation periods. There exists a period-age relation for subgiants distinct from the MS period-age relations. There is also a period-radius relation that can be used as a constraint on the stellar radius, particularly in the interesting case of planet host stars. The high-mass/low-mass break in the rotation distribution on the MS persists onto the subgiant branch, and has potential as a diagnostic of stellar mass. Finally, this set of theoretical predictions can be compared to extensive datasets to motivate improved modeling.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A168
- Title:
- Sample of 31 dwarf and 18 Lyman-Break galaxies
- Short Name:
- J/A+A/641/A168
- Date:
- 10 Mar 2022 07:07:07
- Publisher:
- CDS
- Description:
- The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred million years; and (ii) the decrease in sMdust at a later time. We fitted spectral energy distribution (SED) of dwarf galaxies and LBGs with the 'Code Investigating GALaxies Emission' (CIGALE), through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ~100Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows.
- ID:
- ivo://CDS.VizieR/J/ApJS/210/3
- Title:
- SDSS bulge, disk and total stellar mass estimates
- Short Name:
- J/ApJS/210/3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here.