- ID:
- ivo://CDS.VizieR/J/MNRAS/473/4436
- Title:
- Spectral properties of 441 radio pulsars
- Short Name:
- J/MNRAS/473/4436
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100MHz. The observations at 728 and 3100MHz were conducted simultaneously using the dual-band 10-50cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60+/-0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/624/A49
- Title:
- Spectra of Earth-like planets around M-dwarfs
- Short Name:
- J/A+A/624/A49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The characterisation of the atmosphere of exoplanets is one of the main goals of exoplanet science in the coming decades. We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). We used a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hypothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal- to-noise ratio (S/N) model and applied it to our transmission spectra. High abundances of methane (CH_4_) and water (H_2_O) in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets. Increased temperatures in the middle atmosphere of mid- to late-type M-dwarf planets expand the atmosphere and further increase the detectability of absorption bands. To detect CH_4_, H_2_O, and carbon dioxide (CO_2_) in the atmosphere of an Earth-like planet around a mid to late M dwarf observing only one transit with JWST could be enough up to a distance of 4pc and less than ten transits up to a distance of 10pc. As a consequence of saturation limits of JWST and less pronounced absorption bands, the detection of spectral features of hypothetical Earth-like planets around most early M dwarfs would require more than ten transits. We identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS 1140) around which atmospheric absorption features of hypothetical Earth-like planets could be detected by co-adding just a few transits. The TESS satellite will likely find new transiting terrestrial planets within 15pc from the Earth. We show that using transmission spectroscopy, JWST could provide enough precision to be able to partly characterise the atmosphere of TESS findings with an Earth-like composition around mid to late M dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/642/A71
- Title:
- Spectra of 14 Magellanic Cloud planetary nebulae
- Short Name:
- J/A+A/642/A71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We obtained new spectra of fourteen Magellanic Cloud planetary nebulae with the South African Large Telescope to determine heating rates of their central stars and to verify evolutionary models of post asymptotic giant branch stars. We compared new spectra with observations made in previous years. Five planetary nebulae showed an increase of the excitation with time. Four of their central stars exhibit [WC] features in their spectra, including three new detections. This raises the total number of [WC] central stars of PNe in the Magellanic Clouds to ten. We compared determined heating rates of the four [WC] central stars with the He burning post asymptotic giant branch evolutionary tracks and the remaining star with the H-burning tracks. Determined heating rates are consistent with the evolutionary models for both H and He-burning post asymptotic giant branch stars. The central stars of the PNe which show the fastest increase of excitation are also the most luminous in the sample. This indicates that [WC] central stars in the Magellanic Clouds evolve faster than H-burning central stars and originate from more massive progenitors.
- ID:
- ivo://CDS.VizieR/J/AJ/158/147
- Title:
- Spectrophotometric parallaxes with linear models
- Short Name:
- J/AJ/158/147
- Date:
- 07 Jan 2022 11:19:14
- Publisher:
- CDS
- Description:
- With contemporary infrared spectroscopic surveys like APO Galactic Evolution Experiment (APOGEE), red-giant stars can be observed to distances and extinctions at which Gaia parallaxes are not highly informative. Yet the combination of effective temperature, surface gravity, composition, and age-all accessible through spectroscopy - determines a giant's luminosity. Therefore spectroscopy plus photometry should enable precise spectrophotometric distance estimates. Here we use the overlap of APOGEE, Gaia, the Two Micron All Sky Survey (2MASS), and the Wide-field Infrared Survey Explorer (WISE) to train a data-driven model to predict parallaxes for red-giant branch stars with 0<logg=<2.2 (more luminous than the red clump). We employ (the exponentiation of) a linear function of APOGEE spectral pixel intensities and multiband photometry to predict parallax spectrophotometrically. The model training involves no logarithms or inverses of the Gaia parallaxes, and needs no cut on the Gaia parallax signal-to-noise ratio. It includes an L1 regularization to zero out the contributions of uninformative pixels. The training is performed with leave-out subsamples such that no star's astrometry is used even indirectly in its spectrophotometric parallax estimate. The model implicitly performs a reddening and extinction correction in its parallax prediction, without any explicit dust model. We assign to each star in the sample a new spectrophotometric parallax estimate; these parallaxes have uncertainties of less than 15%, depending on data quality, which is more precise than the Gaia parallax for the vast majority of targets, and certainly any stars more than a few kiloparsec distance. We obtain 10% distance estimates out to heliocentric distances of 20 kpc, and make global maps of the Milky Way's disk.
- ID:
- ivo://CDS.VizieR/J/A+A/569/A125
- Title:
- Spiral structure of the Milky Way
- Short Name:
- J/A+A/569/A125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have updated the catalogs of Galactic HII regions, giant molecular clouds (GMCs), and 6.7-GHz methanol masers to outline the spiral structure of our Galaxy. The related parameters have been collected and (re)calculated based on the data in the literature. In particular, for each spiral tracer, we list the photometric or trigonometric distance, and/or the solutions of the kinematic distance ambiguity (KDA) when available. The kinematic distances when adopted are calculated using a flat rotation curve with two sets of R_0_, {Theta}_0_, and solar motions, where one set is the IAU standard and the other is from the new observational results. The rotation curve of Brand & Blitz (1993, Cat. J/A+A/275/67) is also used to derive the kinematic distances.
- ID:
- ivo://CDS.VizieR/J/ApJ/803/109
- Title:
- Spitzer/IRS spectral decompositon of AGN
- Short Name:
- J/ApJ/803/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results on the spectral decomposition of 118 Spitzer Infrared Spectrograph (IRS) spectra from local active galactic nuclei (AGNs) using a large set of Spitzer/IRS spectra as templates. The templates are themselves IRS spectra from extreme cases where a single physical component (stellar, interstellar, or AGN) completely dominates the integrated mid-infrared emission. We show that a linear combination of one template for each physical component reproduces the observed IRS spectra of AGN hosts with unprecedented fidelity for a template fitting method with no need to model extinction separately. We use full probability distribution functions to estimate expectation values and uncertainties for observables, and find that the decomposition results are robust against degeneracies. Furthermore, we compare the AGN spectra derived from the spectral decomposition with sub-arcsecond resolution nuclear photometry and spectroscopy from ground-based observations. We find that the AGN component derived from the decomposition closely matches the nuclear spectrum with a 1{sigma} dispersion of 0.12dex in luminosity and typical uncertainties of ~0.19 in the spectral index and ~0.1 in the silicate strength. We conclude that the emission from the host galaxy can be reliably removed from the IRS spectra of AGNs. This allows for unbiased studies of the AGN emission in intermediate- and high-redshift galaxies--currently inaccesible to ground-based observations--with archival Spitzer/IRS data and in the future with the Mid-InfraRed Instrument of the James Webb Space Telescope.
- ID:
- ivo://CDS.VizieR/J/ApJ/789/147
- Title:
- Star formation histories of LG dwarf galaxies
- Short Name:
- J/ApJ/789/147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with {tau} ~ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH ({tau} ~ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10^5^ M_{sun}_ to 30% for galaxies with M > 10^7^ M_{sun}_) and is largely explained by environment; (5) the distinction between "ultra-faint" and "classical" dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.
- ID:
- ivo://CDS.VizieR/J/AJ/127/1531
- Title:
- Star formation history of SMC
- Short Name:
- J/AJ/127/1531
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the spatially resolved star formation and chemical enrichment history of the Small Magellanic Cloud (SMC) across the entire central 4{deg}x4.5{deg} area of the main body, based on UBVI photometry from our Magellanic Clouds Photometric Survey.
- ID:
- ivo://CDS.VizieR/J/ApJ/661/L143
- Title:
- Star formation rate in Seyfert galaxies
- Short Name:
- J/ApJ/661/L143
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Feedback from black hole activity is widely believed to play a key role in regulating star formation and black hole growth. A long-standing issue is the relation between star formation and the fueling of the supermassive black holes in active galactic nuclei (AGNs). We compile a sample of 57 Seyfert galaxies to tackle this issue. We estimate the surface densities of gas and star formation rates in circumnuclear regions (CNRs). Comparing them with the well-known Kennicutt-Schmidt (K-S) law, we find that the star formation rates (SFRs) in the CNRs of most Seyfert galaxies are suppressed in this sample. Feedback is suggested to explain the suppressed SFRs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/374/664
- Title:
- Stellar atmospheric parameters in MILES library
- Short Name:
- J/MNRAS/374/664
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a homogeneous set of stellar atmospheric parameters (Teff, logg, [Fe/H]) for MILES, a new spectral stellar library covering the range {lambda}{lambda}3525-7500{AA} at 2.3{AA} (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric parameters, from super-metal-rich, cool stars to hot, metal-poor stars. The spectral resolution, spectral type coverage and number of stars represent a substantial improvement over previous libraries used in population synthesis models. The atmospheric parameters that we present here are the result of a previous, extensive compilation from the literature. In order to construct a homogeneous data set of atmospheric parameters we have taken the sample of stars of Soubiran, Katz & Cayrel (1998, Cat. <J/A+AS/133/221>, which has very well determined fundamental parameters, as the standard reference system for our field stars, and have calibrated and bootstrapped the data from other papers against it. The atmospheric parameters for our cluster stars have also been revised and updated according to recent metallicity scales, colour-temperature relations and improved set of isochrones.