- ID:
- ivo://CDS.VizieR/J/AJ/155/165
- Title:
- Dissipation in exoplanet hosts from tidal spin-up
- Short Name:
- J/AJ/155/165
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stars with hot Jupiters (HJs) tend to rotate faster than other stars of the same age and mass. This trend has been attributed to tidal interactions between the star and planet. A constraint on the dissipation parameter Q_*_' follows from the assumption that tides have managed to spin up the star to the observed rate within the age of the system. This technique was applied previously to HATS-18 and WASP-19. Here, we analyze the sample of all 188 known HJs with an orbital period <3.5 days and a "cool" host star (T_eff_<6100 K). We find evidence that the tidal dissipation parameter (Q_*_') increases sharply with forcing frequency, from 10^5^ at 0.5 day^-1^ to 10^7^ at 2 day^-1^. This helps to resolve a number of apparent discrepancies between studies of tidal dissipation in binary stars, HJs, and warm Jupiters. It may also allow for a HJ to damp the obliquity of its host star prior to being destroyed by tidal decay.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/747/50
- Title:
- Distance to Cepheids using the Wesenheit function
- Short Name:
- J/ApJ/747/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we explore the possibility of using the Wesenheit function to derive individual distances to Galactic Cepheids, as the dispersion of the reddening-free Wesenheit function is smaller than the optical period-luminosity (P-L) relation. When compared to the distances from various methods, the averaged differences between our results and published distances range from -0.061 to 0.009, suggesting that the Wesenheit function can be used to derive individual Cepheid distances. We have also constructed Galactic P-L relations and selected Wesenheit functions based on the derived distances. A by-product from this work is the derivation of Large Magellanic Cloud distance modulus when calibrating the Wesenheit function. It is found to be 18.531+/-0.043 mag.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/115
- Title:
- Double-component model fitting of elliptical gal.
- Short Name:
- J/ApJ/836/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ~3 and ~15kpc. The inner component lies on the mass-size relation of ETGs at z~0.25-0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing {sigma} and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.
- ID:
- ivo://CDS.VizieR/J/ApJ/866/L1
- Title:
- Dust models & IR spectroscopy obs. of AGB stars
- Short Name:
- J/ApJ/866/L1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Many emission features remain unidentified in the infrared spectra of asymptotic giant branch (AGB) stars. In particular, features at ~11, 20, 28, and 32{mu}m have been noted in mid-infrared spectra of oxygen-rich AGB stars. Here, I present models of dust excess emission in 36 spectra of 24 AGB stars from the Short Wavelength Spectrometer on board the Infrared Space Observatory and the Infrared Spectrograph on the Spitzer Space Telescope. The models include opacities of grains composed of mixtures of various polymorphs of alumina obtained by preparing bayerite and boehmite at high temperatures, and these dust components provide satisfactory fits to the 11, 20, 28, and 32{mu}m features. Though not a direct conclusion from this study, the presence of grains of the various polymorphs of aluminas in circumstellar dust shells around AGB stars suggests that corundum may have a role in giving rise to the 13{mu}m feature.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A47
- Title:
- Dwarf stars limb-darkening coefficients
- Short Name:
- J/A+A/658/A47
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a program aiming to deliver such a sample of stars. Here we present new fundamental stellar parameters of nine dwarf stars that will be used as benchmark stars for large stellar surveys. One of these stars is the solar-twin 18Sco, which is also one of the Gaia-ESO benchmarks. The goal is to reach a precision of 1% in effective temperatures (Teff). This precision is important for accurate determinations of the full set of fundamental parameters and abundances of stars observed by the surveys. We observed HD131156 (xi Boo), HD146233 (18 Sco), HD152391, HD173701, HD185395 (theta Cyg), HD186408 (16 Cyg A), HD186427 (16 Cyg B), HD190360 and HD207978 (15 Peg) using the high angular resolution optical interferometric instrument PAVO at the CHARA Array. We derived limb-darkening corrections from 3D model atmospheres and determined Teff directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE spectrograph and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analyses of unblended lines of neutral and singly ionized iron. For eight of the nine stars we measure the Teff less than 1%, and for one star better than 2%. We determined the median uncertainties in log g and [Fe/H] as 0.015dex and 0.05dex, respectively. This study presents updated fundamental stellar parameters of nine dwarf stars that can be used as new set of benchmarks. All fundamental stellar parameters were based on consistently combining interferometric observations, 3D limb-darkening modelling and spectroscopic analysis. The next paper in this series will extend our sample to giants in the metal-rich range.
- ID:
- ivo://CDS.VizieR/J/A+A/603/A57
- Title:
- 51 Eri b SPHERE/IFS spectra & atmosphere models
- Short Name:
- J/A+A/603/A57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- 51 Eridani b is an exoplanet around a young (20Myr) nearby (29.4pc) F0-type star, which was recently discovered by direct imaging. It is one of the closest direct imaging planets in angular and physical separation (~0.5", ~13AU) and is well suited for spectroscopic analysis using integral field spectrographs. We aim to refine the atmospheric properties of the known giant planet and to constrain the architecture of the system further by searching for additional companions. We used the extreme adaptive optics instrument SPHERE at the Very Large Telescope (VLT) to obtain simultaneous dual-band imaging with IRDIS and integral field spectra with IFS, extending the spectral coverage of the planet to the complete Y- to H-band range and providing additional photometry in the K12-bands (2.11, 2.25 micron). We present the first spectrophotometric measurements in the Y and K bands for the planet and revise its J-band flux to values 40% fainter than previous measurements. Cloudy models with uniform cloud coverage provide a good match to the data. We derive the temperature, radius, surface gravity, metallicity, and cloud sedimentation parameter fsed. We find that the atmosphere is highly super-solar ([Fe/H]~1.0), and the low fsed~1.26 value is indicative of a vertically extended, optically thick cloud cover with small sized particles. The model radius and surface gravity estimates suggest higher planetary masses of M_gravity_=9.1^+4.9^_-3.3_. The evolutionary model only provides a lower mass limit of >2M_jupiter_ (for pure hot-start). The cold-start model cannot explain the luminosity of the planet. The SPHERE and NACO/SAM detection limits probe the 51 Eri system at solar system scales and exclude brown-dwarf companions more massive than 20M_jupiter_ beyond separations of ~2.5AU and giant planets more massive than 2M_jupiter_ beyond 9 au.
- ID:
- ivo://CDS.VizieR/J/A+A/530/A33
- Title:
- Evolutionary tracks to estimate DLA depletions
- Short Name:
- J/A+A/530/A33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Silicates are an important component of interstellar dust that has been poorly investigated in high redshift galaxies. As a preliminary step to studying silicates at high redshift, we survey silicon depletions in damped Ly{alpha} (DLA) systems. Silicon depletion is mild in the Galactic interstellar medium (ISM) and is expected to be weaker in most DLA systems, so we introduce a method for improving the accuracy of DLA depletion measurements.
- ID:
- ivo://CDS.VizieR/J/A+A/585/A5
- Title:
- Exoplanet hosts/field stars age consistency
- Short Name:
- J/A+A/585/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of logR'_HK_ and vsini, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density {rho}_*_ allows us to compute stellar luminosity even if the distance is not available, by combining {rho}_* with the spectroscopic logg. The median value of the TPH ages is ~5Gyr. Even if this sample is not very large, however the result is very similar to what we found for the sample of spectroscopic hosts, whose modal and median values are [3, 3.5)Gyr and ~4.8Gyr, respectively. Thus, these stellar samples suffer almost the same selection effects. An analysis of MS stars of the solar neighbourhood belonging to the same spectral types bring to an age distribution similar to the previous ones and centered around solar age value. Therefore, the age of our Sun is consistent with the age distribution of solar neighbourhood stars with spectral types from late F to early K, regardless of whether they harbour planets or not. We considered the possibility that our selected samples are older than the average disc population.
- ID:
- ivo://CDS.VizieR/J/ApJ/884/11
- Title:
- Exploring 6 AGN dusty torus models. II.
- Short Name:
- J/ApJ/884/11
- Date:
- 04 Dec 2021
- Publisher:
- CDS
- Description:
- This is the second in a series of papers devoted to exploring a set of six dusty models of active galactic nuclei (AGN) with available spectral energy distributions. These models are the smooth torus by Fritz+ (2006MNRAS.366..767F), the clumpy torus by Nenkova+ (2008ApJ...685..147N and 2008ApJ...685..160N), the clumpy torus by Honig & Kishimoto (2010A&A...523A..27H), the two-phase torus by Siebenmorgen+ (2015A&A...583A.120S), the two-phase torus by Stalevski+ (2012MNRAS.420.2756S and 2016MNRAS.458.2288S), and the wind model by Honig & Kishimoto (2017ApJ...838L..20H). The first paper explores discrimination among models and the parameter restriction using synthetic spectra. Here we perform spectral fitting of a sample of 110 AGN drawn from the Swift/BAT survey with Spitzer/IRS spectroscopic data. The aim is to explore which is the model that describes better the data and the resulting parameters. The clumpy wind-disk model by Honig & Kishimoto provides good fits for ~50% of the sample, and the clumpy torus model by Nenkova+ is good at describing ~30% of the objects. The wind-disk model by Honig & Kishimoto is better for reproducing the mid-infrared spectra of type 1 Seyferts (with 60% of the type 1 Seyferts well reproduced by this model compared to the 10% well represented by the clumpy torus model by Nenkova+), while type 2 Seyferts are equally fitted by both models (roughly 40% of the type 2 Seyferts). Large residuals are found irrespective of the model used, indicating that the AGN dust continuum emission is more complex than predicted by the models or that the parameter space is not well sampled. We found that all the resulting parameters for our AGN sample are roughly constrained to 10%-20% of the parameter space. Contrary to what is generally assumed, the derived outer radius of the torus is smaller (reaching up to a factor of ~5 smaller for 10pc tori) for the smooth torus by Fritz+ and the two-phase torus by Stalevski+ than the one derived from the clumpy torus by Nenkova+ Covering factors and line-of-sight viewing angles strongly depend on the model used. The total dust mass is the most robust derived quantity, giving equivalent results for four of these models.
- ID:
- ivo://CDS.VizieR/J/ApJ/725/1215
- Title:
- Faint UV standards from Swift, GALEX and SDSS
- Short Name:
- J/ApJ/725/1215
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of 11 new faint (u~17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer archives and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the near-infrared to the far-ultraviolet. These stars were chosen because they are known to be hot (20000<T_eff_<50000K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures.