- ID:
- ivo://CDS.VizieR/J/ApJ/738/170
- Title:
- False positive Kepler planet candidates
- Short Name:
- J/ApJ/738/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a framework to conservatively estimate the probability that any particular planet-like transit signal observed by the Kepler mission is in fact a planet, prior to any ground-based follow-up efforts. We use Monte Carlo methods based on stellar population synthesis and Galactic structure models, and report false positive probabilities (FPPs) for every Kepler Object of Interest, assuming a 20% intrinsic occurrence rate of close-in planets in the radius range 0.5R_{earth}_<R_p_<20R_{earth}_. Nearly 90% of the 1235 candidates have FPP<10%, and over half have FPP<5%. This probability varies with the magnitude and Galactic latitude of the target star, and with the depth of the transit signal - deeper signals generally have higher FPPs than shallower signals. We establish that a single deep high-resolution image will be an effective follow-up tool for the shallowest (Earth-sized) transits, providing the quickest route toward probabilistically validating the smallest candidates by potentially decreasing the FPP of an Earth-sized transit around a faint star from >10% to <1%. Since Kepler has detected many more planetary signals than can be positively confirmed with ground-based follow-up efforts in the near term, these calculations will be crucial to using the ensemble of Kepler data to determine population characteristics of planetary systems. We also describe how our analysis complements the Kepler team's more detailed BLENDER false positive analysis for planet validation.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/404/661
- Title:
- Fe5270, Fe5335, Mgb and Mg_2_ synthetic indices
- Short Name:
- J/A+A/404/661
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have computed a grid of synthetic spectra in the wavelength range {lambda}{lambda}4600-5600{AA} using revised model atmospheres, for a range of atmospheric parameters and values of [alpha-elements/Fe]=0.0 and +0.4. The Lick indices Fe5270, Fe5335, Mgb and Mg_2_ are measured on the grid spectra, for FWHM=2 to 8.3{AA}. Relations between the indices Fe5270, Fe5335 and Mg_2_ and stellar parameters effective temperature T_eff_, logg, [Fe/H] and [alpha/Fe], valid in the range 4000K>=T_eff_>=7000K, are presented. These fitting functions are given for FWHM=3.5 and 8.3{AA}. The indices were also measured for a list of 97 reference stars with well-known stellar parameters observed at ESO and OHP, and these are compared to the computed indices. Finally, a comparison of the indices measured on the observed spectra and those derived from the fitting functions based on synthetic spectra is presented.
- ID:
- ivo://CDS.VizieR/J/MNRAS/453/2599
- Title:
- Fermi-LAT pulsar spectral data
- Short Name:
- J/MNRAS/453/2599
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- {gamma}-ray radiation from pulsars is usually thought to be mostly produced by the synchro-curvature (SC) losses of accelerated particles. Here, we present a systematic study of all currently reported, good-quality Fermi-LAT pulsar spectral data. We do so by applying a model which follows the particle dynamics and consistently computes the emission of SC radiation. By fitting observational data on a case by case basis, we are able to obtain constraints about the parallel electric field, the typical length-scale over which particles emit the bulk of the detected radiation, and the number of involved particles. The model copes well with data of several dozens of millisecond (MSPs) and young pulsars (YPs). By correlating the inferred model parameters with the observed timing properties, some trends are discovered. First, a non-negligible part of the radiation comes from the loss of perpendicular momentum soon after pair creation. Second, the electric field strongly correlates with both the inverse of the emission length-scale and the magnetic field at light cylinder, thus ruling out models with high-energy photon production close to the surface. These correlations unify young and millisecond pulsars under the same physical scenario, and predict that magnetars are intrinsically {gamma}-ray quiet via synchro-curvature processes, since magnetospheric particles are not accelerated enough to emit a detectable {gamma}-ray flux.
- ID:
- ivo://CDS.VizieR/J/MNRAS/399/432
- Title:
- Fitted UBV magnitude for MS stars
- Short Name:
- J/MNRAS/399/432
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We fit the colour-magnitude diagrams of stars between the zero-age main-sequence and terminal-age main sequence in young clusters and associations. The ages we derive are a factor of 1.5-2 longer than the commonly used ages for these regions, which are derived from the positions of pre-main-sequence stars in colour-magnitude diagrams. From an examination of the uncertainties in the main-sequence and pre-main-sequence models, we conclude that the longer age scale is probably the correct one, which implies that we must revise upwards the commonly used ages for young clusters and associations. Such a revision would explain the discrepancy between the observational lifetimes of protoplanetary discs and theoretical calculations of the time to form planets. It would also explain the absence of clusters with ages between 5 and 30Myr.
- ID:
- ivo://CDS.VizieR/J/A+A/604/A129
- Title:
- Formation of MW halo and its dwarf satellites
- Short Name:
- J/A+A/604/A129
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a homogeneous set of accurate atmospheric parameters for a complete sample of very and extremely metal-poor stars in the dwarf spheroidal galaxies (dSphs) Sculptor, Ursa Minor, Sextans, Fornax, Bootes I, Ursa Major II, and Leo IV. We also deliver a Milky Way (MW) comparison sample of giant stars covering the -4<[Fe/H]<-1.7 metallicity range. We show that, in the [Fe/H]=>-3.7 regime, the non-local thermodynamic equilibrium (NLTE) calculations with non-spectroscopic effective temperature (Teff) and surface gravity (log g) based on the photometric methods and known distance provide consistent abundances of the FeI and FeII lines. This justifies the FeI/FeII ionisation equilibrium method to determine log g for the MW halo giants with unknown distance. The atmospheric parameters of the dSphs and MW stars were checked with independent methods. In the [Fe/H]>-3.5 regime, the TiI/TiII ionisation equilibrium is fulfilled in the NLTE calculations. In the logg-Teff plane, all the stars sit on the giant branch of the evolutionary tracks corresponding to [Fe/H]=-2 to -4, in line with their metallicities. For some of the most metal-poor stars of our sample, we hardly achieve consistent NLTE abundances from the two ionisation stages for both iron and titanium. We suggest that this is a consequence of the uncertainty in the Teff-colour relation at those metallicities. The results of these work provide the base for a detailed abundance analysis presented in a companion paper.
- ID:
- ivo://CDS.VizieR/J/ApJS/255/22
- Title:
- FRII radio sources dynamical models
- Short Name:
- J/ApJS/255/22
- Date:
- 03 Dec 2021 13:25:10
- Publisher:
- CDS
- Description:
- Dynamical evolution models of 361 extragalactic Fanaroff-Riley type II radio sources selected from the Cambridge 3CRR, 6CE, 5C6, and 5C7 Sky Surveys, as well as the Bologna B2, Green Bank GB, and GB2 Surveys, are presented. Their spectra, compiled mostly from the recent catalogs of radio sources and the available NASA/IPAC and Astrophysical Catalogs Support System databases, along with morphological characteristics of the sources determined from their radio maps, have been modeled using the DYNAGE algorithm and/or its extension (KDA EXT) for the hypothetical case of further evolution after the jet's termination. The best-fit models provide estimates of a number of important physical parameters of the sources, as (i) the jet power, (ii) the density distribution of the external gaseous medium surrounding the radio core and the jet propagating through it, (iii) the initial energy distribution of the relativistic particles accelerated at the shock fronts, and (iv) the age of the observed radio structure. Additionally, estimates of some derivative parameters are provided, e.g., the radio lobes' pressure, their longitudinal expansion velocity, the magnetic field strength, and the total energy deposited in the lobes. The observed spectra and their best-fit models are included. Finally, one of the useful applications of the above models is presented, namely a strong correlation between the ambient medium density and the rest-frame two-point spectral index available directly from the observed spectra.
- ID:
- ivo://CDS.VizieR/J/other/AstBu/74.62
- Title:
- Fundamental parameters of CP stars
- Short Name:
- J/other/AstBu/74
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The paper presents the results of determination of fundamental parameters (effective temperature, surface gravity, luminosity, mass, radius, rotation velocity, and radial velocity) for 146 stars observed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the Main Stellar Spectrograph during 2009-2011; 124 of the stars are magnetic or potentially magnetic objects. We obtained and analyzed at least 500 pairs of circularly-polarized-emission spectra. Various methods and approaches were used in estimating the fundamental parameters.
- ID:
- ivo://CDS.VizieR/J/A+A/440/305
- Title:
- Fundamental parameters of fast-rotating B stars
- Short Name:
- J/A+A/440/305
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we develop a calculation code to account for the effects carried by fast rotation on the observed spectra of early-type stars. Stars are assumed to be in rigid rotation, and the grid of plane-parallel model atmospheres used to represent the gravitational darkening are calculated by means of a non-LTE approach. Attention is paid to the relation between the apparent and parent non-rotating counterpart stellar fundamental parameters and apparent, and true Vsini parameters as a function of the rotation rate Omega/Omega_c_, stellar mass, and inclination angle. It is shown that omitting of gravitational darkening in the analysis of chemical abundances of CNO elements can produce systematic overestimation or underestimation, depending on the lines used, rotational rate, and inclination angle.
- ID:
- ivo://CDS.VizieR/J/MNRAS/446/3943
- Title:
- galaxies 2D phot. decompositions in SDSS-DR7
- Short Name:
- J/MNRAS/446/3943
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of 2D, point spread function-corrected de Vacouleurs, Sersic, de Vacouleurs+Exponential, and Sersic+Exponential fits of ~7x10^5^ spectroscopically selected galaxies drawn from the Sloan Digital Sky Survey (SDSS) Data Release 7. Fits are performed for the SDSS r band utilizing the fitting routine galfit and analysis pipeline pymorph. We compare these fits to prior catalogues. Fits are analysed using a physically motivated flagging system. The flags suggest that more than 90 percent of two-component fits can be used for analysis. We show that the fits follow the expected behaviour for early and late galaxy types. The catalogues provide a robust set of structural and photometric parameters for future galaxy studies. We show that some biases remain in the measurements, e.g. the presence of bars significantly affect the bulge measurements although the bulge ellipticity may be used to separate barred and non-barred galaxies, and about 15 percent of bulges of two-component fits are also affected by resolution. The catalogues are available in electronic format. We also provide an interface for generating postage stamp images of the 2D model and residual as well as the 1D profile. These images can be generated for a user-uploaded list of galaxies on demand.
- ID:
- ivo://CDS.VizieR/J/ApJ/636/721
- Title:
- Galaxy rotation curves
- Short Name:
- J/ApJ/636/721
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew-symmetric field F_{mu}{nu}{lambda}_ to the problem of explaining galaxy rotation curves without exotic dark matter. Our sample of galaxies includes low surface brightness (LSB) and high surface brightness (HSB) galaxies and an elliptical galaxy. In those cases for which photometric data are available, a best fit via the single parameter (M/L)_stars_ to the luminosity of the gaseous (HI plus He) and luminous stellar disks is obtained. In addition, a best fit to the rotation curves of galaxies is obtained in terms of a parametric mass distribution (independent of luminosity observations) - a two-parameter fit to the total galactic mass (or mass-to-light ratio M/L) and a core radius associated with a model of the galaxy cores - using a nonlinear least-squares fitting routine including estimated errors. The fits are compared to those obtained using Milgrom's phenomenological MOND model and to the predictions of the Newtonian/Kepler acceleration law.