The SPM4 Catalog contains absolute proper motions, celestial coordinates, and B,V photometry for 103,319,647 stars and galaxies between the south celestial pole and -20 degrees declination. The catalog is roughly complete to V=17.5. It is based on photographic and CCD observations taken with the Yale Southern Observatory's double-astrograph at Cesco Observatory in El Leoncito, Argentina. The first-epoch survey, taken from 1965 to 1979, was entirely photographic. The second-epoch survey is approximately 1/3 photographic (taken from 1988 to 1998) and 2/3 CCD-based (taken from 2004 through 2008). Full details about the creation of the SPM4.0 catalog can be found in the paper, and also in the document "spm4_doc.txt" file which describes the original files, accessible from http://www.astro.yale.edu/astrom/spm4cat/
The SPM Catalog 2.0 provides positions, absolute proper motions and photographic BV photometry for over 320,000 stars and galaxies. The Catalog covers an area of ~3700 square degrees in an irregularly bounded band between declinations of -43 and -22 degrees, with a slight extension near the South Galactic Pole, but excluding fields in the plane of the Milky Way. Stars cover the magnitude range 5<V<18.5. The standard errors for the best measured stars are as follows: 20 mas for positions in each coordinate; 2mas/yr for absolute proper motions and 0.05mag for B and V magnitudes. Standard error estimates of positions, absolute proper motions and magnitudes are given for each individual object. In addition to the Catalog, a list of CCD calibrating sequences is provided. Note that all fields (and objects) contained in the 1.0 version of the Catalog are also included in this version. The values of the astrometric parameters for these objects, however, may be different due to refinements in the reduction procedure, (i.e. the SGP fields were re-reduced for inclusion in the SPM catalog 2.0).
The formation of globular clusters remains an open debate. Dwarf starburst galaxies are efficient at forming young massive clusters with similar masses as globular clusters and may hold the key to understanding their formation. We study star cluster formation in a tidal debris - including the vicinity of three tidal dwarf galaxies - in a massive gas dominated collisional ring around NGC 5291. These dwarfs have physical parameters which differ significantly from local starbursting dwarfs. They are gas-rich, highly turbulent, have a gas metallicity already enriched up to half-solar, and are expected to be free of dark matter. The aim is to study massive star cluster formation in this as yet unexplored type of environment. We use imaging from the Hubble Space Telescope using broadband filters covering the wavelength range from the near- ultraviolet to the near-infrared. We determine the masses and ages of the cluster candidates by using the spectral energy distribution- fitting code CIGALE, carefully considering age-extinction degeneracy effects on the estimation of the physical parameters. Results. We find that the tidal dwarf galaxies in the ring of NGC 5291 are forming star clusters with an average efficiency of about 40%, comparable to blue compact dwarf galaxies. We also find massive star clusters for which the photometry suggests that they were formed at the very birth of the tidal dwarf galaxies and have survived for several hundred million years. Therefore our study shows that extended tidal dwarf galaxies and compact clusters may be formed simultaneously. In the specific case observed here, the young star clusters are not massive enough to survive for a Hubble time. However one may speculate that similar objects at higher redshift, with higher star formation rate, might form some of the long lived globular clusters.
To produce an homogeneous catalog of astrophysical parameters of 239 resolved star clusters located in the Small and Large Magellanic Clouds, observed in the Washington photometric system. The cluster sample was processed with the recently introduced Automated Stellar Cluster Analysis (ASteCA) package, which ensures both an automatized and a fully reproducible treatment, together with a statistically based analysis of their fundamental parameters and associated uncertainties. The fundamental parameters determined with this tool for each cluster, via a color-magnitude diagram (CMD) analysis, are: metallicity, age, reddening, distance modulus, and total mass. We generated an homogeneous catalog of structural and fundamental parameters for the studied cluster sample, and performed a detailed internal error analysis along with a thorough comparison with values taken from twenty-six published articles. We studied the distribution of cluster fundamental parameters in both Clouds, and obtained their age-metallicity relationships. The ASteCA package can be applied to an unsupervised determination of fundamental cluster parameters; a task of increasing relevance as more data becomes available through upcoming surveys.
We present CCD photometry and spectroscopy for stars in Lucke-Hodge 9 and 10, two adjacent OB association in the northwest corner of the LMC. Our catalog contains UBV photometry (complete to ~18mag in all three filters) for 795 stars and BV-only photometry (complete to ~19mag in both filters) for an additional 434 stars.
Using CCD UBV photometry and spectroscopy, we have investigated the stellar content of NGC 346, the brightest H II region in the SMC. Spectra of 42 stars confirm that 33 are of O type, of which 11 are of type O6.5 or earlier; this is as many early-type O stars as is known in the rest of the SMC. From the spectroscopy and photometry we are able to construct an H-R diagram which is essentially complete down to ~10M_{sun}_. We find an initial mass-function slope {GAMMA}=-1.9, similar to that found for massive stars near the Sun and in the LMC: the presence of six stars in the mass range 40-85M_{sun}_ suggests that the upper-mass limit of the IMF is also not appreciably lower in the SMC than it is in the Galaxy. Our photometry has identified five probable red supergiants of which one was previously known. These stars, plus two B supergiants, are evolved stars of considerably lower mass (15M_{sun}_) than many of the unevolved cluster members. Most of these lower-mass, evolved stars form a spatially distinct subgroup; we believe that NGC 346 thus provides an example of sequential star formation in the SMC. We also have identified a background field population of 5M_{sun}_ stars. We find that the ionizing flux from the hot stars is consistent with the previously known Half nebular luminosity. Finally, we discuss the enigmatic W-R binary HD 5980, which our point-spread-function fitting has identified as a close visual double.
The extended stellar halos of galaxies contain important clues for investigating their assembly history and evolution. We investigate the resolved stellar content and the extended halo of NGC 5128 as a function of galactocentric distance, and trace the halo outward to its currently detectable limits. We used Hubble Space Telescope images obtained with the WFPC2, ACS, and WFC3 cameras equipped with F606W and F814W filters to resolve individual red giant branch (RGB) stars in 28 independent pointings across the halo of NGC 5128. The stellar halo analysis for 14 of these pointings is presented here for the first time. Star counts from deep VI color-magnitude diagrams reaching at least 1.5mag below the tip of the RGB are used to derive the surface density distribution of the halo. The contamination by Milky Way stars is assessed with a new control field, with models, and by combining optical and near-IR photometry. We present a new calibration of the WFC3 F606W + F814W photometry to the ground-based VI photometric system. The photometry shows that the stellar halo of NGC 5128 is dominated by old RGB stars that are present in all fields. The V-band surface brightness of fields changes from 23 to 32mag/arcsec^2^ between the innermost field only 8.3kpc from the galaxy center to our outermost halo fields, which are located 140 kpc away from the center along the major axis and 92 kpc along the minor axis. Within the inner ~30kpc, we also find evidence for a 2-3Gyr old population traced by asymptotic giant branch stars that are brighter than the tip of the RGB. This population contributes only up to 10% in total stellar mass if it is 2Gyr old, but a larger fraction of 30-40% is required if its age is 3Gyr. The stellar surface density profile is well fit by a classic r^1/4^ curve or a simple power-law form ~r^-3.1^ over the full radial range, with no obvious break in the slope, but with large field-to-field scatter. The ellipticity measured from integrated-light photometry in the inner parts, e=(b/a)=0.77, flattens to e=0.54+/-0.02 beyond 30kpc. Considering the flattening of the outer halo, the projection of the elliptical isophote on the semimajor axis for our most distant field reaches nearly 30 effective radii.
We present the results of spectroscopic observations for 52 objects from the list of H{alpha} emission stars of Stephenson (1986ApJ...300..779S). Out of six known T Tauri stars observed, five showed H{alpha} in emission and in one (StHa 40), H{alpha} changed from being in absorption to emission over a period of two years, accompanied by photometric and spectral type variability. We confirm the T Tauri nature of one Stephenson object (StHa 48) on the basis of the presence of H{alpha} and H{beta} in emission, Li I {lambda}6708 in absorption, infrared excess and X-ray emission. Among the 52 objects observed, there were other emission line objects: 1 Ke star, 1 BQ[] star, 2 galaxies and 2 Be stars. We present a higher-resolution spectrum of StHa 62 showing permitted and forbidden lines in emission typical of BQ[] stars. Twenty five out of 30 newly observed objects failed to show H{alpha} in emission. We also present 2MASS observations for 112 StHa objects. We suggest three Stephenson objects (StHa 52, 125 and 129) to be YSOs on the basis of 2MASS, IRAS and ROSAT observations. These and all other known YSOs amongst StHa stars are found in regions of star-forming clouds in Taurus, Orion and Ophiuchus. YSOs at high galactic latitudes in other parts of the sky are therefore rare.
The feasibility of using data from the NASA STEREO mission for variable star and asteroseismology studies has been examined. A data analysis pipeline has been developed that is able to apply selected algorithms to the entire database of nearly a million stars to search for signs of variability. An analysis limited to stars of magnitude 10.5 has been carried out, which has resulted in the extraction of 263 eclipsing binaries (EBs), of which 122 are not recorded as such in the SIMBAD online database. The characteristics of the STEREO observations are shown to be extremely well-suited to variable star studies with the ability to provide continuous phase coverage for extended periods as well as repeated visits that allow both short and long term variability to be observed. This will greatly inform studies of particular stars, such as the pre-cataclysmic variable V471 Tau, as well as entire classes of stars, including many forms of rotational variability. The high-precision photometry has also revealed a potentially substellar companion to a bright (R=7.5mag) nearby star (HD 213597), detected with 5 sigma significance. This would provide a significant contribution to exoplanet research if follow-up observations ascertain the mass to be within the planetary domain. Some particularly unusual EBs from the recovered sample are discussed, including a possible reclassification of a well-known star as an EB rather than a rotational variable (HR 7355) and several particularly eccentric systems, including very long-period EBs.