- ID:
- ivo://CDS.VizieR/J/ApJ/846/145
- Title:
- PHAT. XIX. Formation history of M31 disk
- Short Name:
- J/ApJ/846/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We map the star formation history across M31 by fitting stellar evolution models to color-magnitude diagrams of each 83"x83" (0.3x1.4kpc, deprojected) region of the Panchromatic Hubble Andromeda Treasury (PHAT) survey outside of the innermost 6'x12' portion. We find that most of the star formation occurred prior to ~8Gyr ago, followed by a relatively quiescent period until ~4Gyr ago, a subsequent star formation episode about 2Gyr ago, and a return to relative quiescence. There appears to be little, if any, structure visible for populations with ages older than 2Gyr, suggesting significant mixing since that epoch. Finally, assuming a Kroupa initial mass function from 0.1 to 100M_{sun}_, we find that the total amount of star formation over the past 14Gyr in the area over which we have fit models is 5x10^10^M_{sun}_. Fitting the radial distribution of this star formation and assuming azimuthal symmetry, (1.5+/-0.2)x10^11^M_{sun}_ of stars has formed in the M31 disk as a whole, (9+/-2)x10^10^M_{sun}_ of which has likely survived to the present after accounting for evolutionary effects. This mass is about one-fifth of the total dynamical mass of M31.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/466/2006
- Title:
- Phoenix dwarf galaxy RV and [Fe/H] catalog
- Short Name:
- J/MNRAS/466/2006
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of different dwarf morphological types. Here we present results from a spectroscopic survey of ~200 individual red giant branch stars in the Phoenix dwarf, the closest transition type with a comparable luminosity to 'classical' dwarf galaxies. We measure a systemic heliocentric velocity Vhelio=-21.2+/-1.0km/s. Our survey reveals the clear presence of prolate rotation that is aligned with the peculiar spatial distribution of the youngest stars in Phoenix. We speculate that both features might have arisen from the same event, possibly an accretion of a smaller system. The evolved stellar population of Phoenix is relatively metal-poor (<[Fe/H]>=-1.49+/-0.04dex) and shows a large metallicity spread (sigma_[Fe/H]_=0.51+/-0.04dex), with a pronounced metallicity gradient of -0.13+/-0.01dex/arcmin similar to luminous, passive dwarf galaxies. We also report a discovery of an extremely metal-poor star candidate in Phoenix and discuss the importance of correcting for spatial sampling when interpreting the chemical properties of galaxies with metallicity gradients. This study presents a major leap forward in our knowledge of the internal kinematics of the Phoenix transition type dwarf galaxy and the first wide area spectroscopic survey of its metallicity properties.
- ID:
- ivo://CDS.VizieR/J/ApJ/831/116
- Title:
- Photmetry and spectroscopy of PMS stars in NGC 2264
- Short Name:
- J/ApJ/831/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500<{T}_eff[K]_<=6500).
- ID:
- ivo://CDS.VizieR/J/ApJS/254/31
- Title:
- Photometric metallicities of stars in SkyMapper DR2
- Short Name:
- J/ApJS/254/31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Milky Way's metal-poor stars are nearby ancient objects that are used to study early chemical evolution and the assembly and structure of the Milky Way. Here we present reliable metallicities of ~280000 stars with -3.75<~[Fe/H]<~-0.75 down to g=17 derived using metallicity-sensitive photometry from the second data release of the SkyMapper Southern Survey. We use the dependency of the flux through the SkyMapper v filter on the strength of the CaII K absorption features, in tandem with SkyMapper u, g, i photometry, to derive photometric metallicities for these stars. We find that metallicities derived in this way compare well to metallicities derived in large-scale spectroscopic surveys, and we use such comparisons to calibrate and quantify systematics as a function of location, reddening, and color. We find good agreement with metallicities from the APOGEE, LAMOST, and GALAH surveys, based on a standard deviation of {sigma}~0.25dex of the residuals of our photometric metallicities with respect to metallicities from those surveys. We also compare our derived photometric metallicities to metallicities presented in a number of high-resolution spectroscopic studies to validate the low-metallicity end ([Fe/H]{<}-2.5) of our photometric metallicity determinations. In such comparisons, we find the metallicities of stars with photometric [Fe/H]{<}-2.5 in our catalog show no significant offset and a scatter of {sigma}~0.31dex level relative to those in high-resolution work when considering the cooler stars (g-i>0.65) in our sample. We also present an expanded catalog containing photometric metallicities of ~720000 stars as a data table for further exploration of the metal-poor Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/169
- Title:
- Photometric obs. & LAMOST sp. of 4 W UMa binaries
- Short Name:
- J/ApJ/901/169
- Date:
- 22 Feb 2022 00:36:07
- Publisher:
- CDS
- Description:
- We present new photometric data and LAMOST spectra for the W UMa binaries UV Lyn, V781 Tau, NSVS 4484038, and 2MASS J15471055+5302107. The orbital and starspot parameters are obtained using the Wilson-Devinney program. Comparing the starspot parameters at different times, there are magnetic activities in these four binaries. The orbital period of UV Lyn is increasing at a rate of dP/dt=+8.9(5)x10^-8^d/yr, which maybe due to mass transfer from the less massive component to the more massive component (dM1/dt=-6.4x10^-8^M_{sun}_/yr). The period variation of 2MASSJ15471055+5302107 is also increasing at a rate of 6.0(4)x10^-7^d/yr, which can be explained by mass transfer from the less massive component to the more massive component (dM1/dt=-2.8x10^-7^M_{sun}_/yr). The period variation of V781 Tau presents the downward parabola superimposed the cyclic oscillation. The period of V781 Tau is decreasing (dP/dt=-3.2(4)x10^-8^d/yr), which can be explained by mass transfer from the more massive component to the less massive component (dM2/dt=-2.2x10^-8^M_{sun}_/yr). The cyclic oscillation may be due to the magnetic activity with a period of 30.8(5)yr rather than a third body. The period variation of NSVS4484038 also shows the cyclic oscillation, which could be explained by the magnetic activity with 10.8(1)yr or a black hole candidate. Interestingly, there is a depth variation between the light minimum times of NSVS 4484038, which may also be caused by stellar magnetic activity.
- ID:
- ivo://CDS.VizieR/J/MNRAS/475/1633
- Title:
- Photometric study of globular clusters
- Short Name:
- J/MNRAS/475/1633
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we describe the photometric and spectroscopic properties of multiple populations in seven northern globular clusters. In this study, we employ precise ground-based photometry from the private collection of Stetson, space photometry from the Hubble Space Telescope (HST), literature abundances of Na and O, and Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey abundances for Mg, Al, C, and N. Multiple populations are identified by their position in the C_U,B,I_-V pseudo colour-magnitude diagram (pseudo-CMD) and confirmed with their chemical composition determined using abundances. We confirm the expectation from previous studies that the red giant branches (RGBs) in all seven clusters are split and the different branches have different chemical compositions. The Mg-Al anticorrelations were well explored by the APOGEE and Gaia-ESO surveys for most globular clusters, some clusters showing bimodal distributions, while others continuous distributions. Even though the structure (i.e. bimodal versus continuous) of Mg-Al can greatly vary, the Al-rich and Al-poor populations do not seem to have very different photometric properties, agreeing with theoretical calculations. There is no one-to-one correspondence between the Mg-Al anticorrelation shape (bimodal versus continuous) and the structure of the RGB seen in the HST pseudo-CMDs, with the HSTphotometric information usually implying more complex formation/evolution histories than the spectroscopic ones. We report on finding two second-generation horizontal branch (HB) stars in M5, and five second-generation asymptotic giant branch (AGB) stars in M92, which is the most metal-poor cluster to date in which second-generation AGB stars have been observed.
- ID:
- ivo://CDS.VizieR/J/MNRAS/442/3044
- Title:
- Photometry and abundances of NGC1851 stars
- Short Name:
- J/MNRAS/442/3044
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 1851 is surrounded by a stellar component that extends more than 10 times beyond the tidal radius. Although the nature of this stellar structure is not known, it has been suggested to be a sparse halo of stars or associated with a stellar stream. We analyse the nature of this intriguing stellar component surrounding NGC 1851 by investigating its radial velocities and chemical composition, in particular in comparison with those of the central cluster analysed in a homogeneous manner. In total we observed 23 stars in the halo with radial velocities consistent with NGC 1851, and for 15 of them we infer [Fe/H] abundances. Our results show that (i) stars dynamically linked to NGC 1851 are present at least up to ~2.5 tidal radii, supporting the presence of a halo of stars surrounding the cluster; (ii) apart from the NGC 1851 radial velocity-like stars, our observed velocity distribution agrees with that expected from Galactic models, suggesting that no other substructure (such as a stream) at different radial velocities is present in our field; (iii) the chemical abundances for the s-process elements Sr and Ba are consistent with the s-normal stars observed in NGC 1851; (iv) all halo stars have metallicities, and abundances for the other studied elements Ca, Mg and Cr, consistent with those exhibited by the cluster. The complexity of the whole NGC 1851 cluster+halo system may agree with the scenario of a tidally disrupted dwarf galaxy in which NGC 1851 was originally embedded.
- ID:
- ivo://CDS.VizieR/J/AJ/150/200
- Title:
- Photometry and spectroscopy of stars in Cz 30
- Short Name:
- J/AJ/150/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new photometric and spectroscopic data of the old open cluster Czernik 30. Wide field BVI photometry allows us to correct for the high field contamination by statistical subtraction to produce a color-magnitude diagram (CMD) that clearly reveals the cluster sequence. From spectra of stars in the cluster field obtained with the Hydra spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5m telescope we determine a mean cluster velocity of +79.9+/-1.5km/s and provide membership information that helps further define the cluster giant branch and red clump. Stellar abundances for the brighter giants in the cluster indicate a mean metallicity of [Fe/H]=-0.2+/-0.15. Fitting theoretical isochrones to the CMD we determine the following properties of Czernik 30: age=2.8+/-0.3Gyr, (m-M)_v_=14.8+/-0.1, E(B-V)=0.24+/-0.06, and E(V-I)=0.36+/-0.04. Czernik 30 is an old, sub-solar metallicity cluster located at a Galactocentric radius of R_gc_~13.3kpc. Given its age and position just beyond the transition to a flat abundance gradient seen in the open cluster population, Czernik 30 provides an interesting target for future observations.
- ID:
- ivo://CDS.VizieR/J/AJ/156/37
- Title:
- Photometry & Li abund. of cool dwarfs in M35
- Short Name:
- J/AJ/156/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Hydra spectra of 85 G-K dwarfs in the young cluster M35 near the Li 6708 {AA} line region are analyzed. From velocities and Gaia astrometry, 78 are likely single-star members that, combined with previous work, produce 108 members with T_eff_ ranging from 6150 to 4000 K as defined by multicolor, broadband photometry, E(B-V)=0.20, and [Fe/H]=-0.15, though there are indications the metallicity may be closer to solar. The Lithium abundance A(Li) follows a well-delineated decline from 3.15 for the hottest stars to upper limits =<1.0 among the coolest dwarfs. Contrary to earlier work, M35 includes single stars at systematically higher A(Li) than the mean cluster relation. This subset exhibits higher V_ROT_ than the more Li-depleted sample and, from photometric rotation periods, is dominated by stars classed as convective (C); all others are interface (I) stars. The cool, high-Li rapid rotators (RRs) are consistent with models that simultaneously consider rapid rotation and radius inflation; RRs hotter than the Sun exhibit excess Li depletion, as predicted by the models. The A(Li) distribution with color and rotation period, when compared to the Hyades/Praesepe and the Pleiades, is consistent with gyrochronological analysis placing M35's age between the older M34 and younger Pleiades. However, the Pleiades display a more excessive range in A(Li) and rotation period than M35 on the low-Li, slow-rotation side of the distribution, with supposedly younger stars at a given T_eff_ in the Pleiades spinning slower, with A(Li) reduced by more than a factor of four compared to M35.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A6
- Title:
- Photospheric parameters of CARMENES stars
- Short Name:
- J/A+A/615/A6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2^ method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since Teff, logg, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma}_Teff_=51K, {sigma}_logg_=0.07, and {sigma}_[Fe/H]_=0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results.