- ID:
- ivo://CDS.VizieR/J/PASP/117/227
- Title:
- Properties of 101 galaxies from the NFGS
- Short Name:
- J/PASP/117/227
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use 101 galaxies selected from the Nearby Field Galaxy Survey to investigate the effect of aperture size on the star formation rate, metallicity, and reddening determinations for galaxies. Our sample includes galaxies of all Hubble types except ellipticals with global star formation rates (SFRs) ranging from 0.01 to 100M_{sun}_/yr, metallicities in the range 7.9<~log(O/H)+12<~9.0, and reddening of 0<~A(V)<~3.3. We compare the SFR, metallicity, and reddening derived from nuclear spectra to those derived from integrated spectra.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/783/4
- Title:
- Properties of Kepler multi-planet candidate systems
- Short Name:
- J/ApJ/783/4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K_P_<13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamical stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.
- ID:
- ivo://CDS.VizieR/J/AJ/156/149
- Title:
- Properties of massive giant planets & brown dwarfs
- Short Name:
- J/AJ/156/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive ab initio simulations of hydrogen-helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities, including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k_2_ and the equidistance, are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as a starting point to obtain material and transport properties for other substellar H-He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations.
- ID:
- ivo://CDS.VizieR/J/ApJ/852/49
- Title:
- Properties of metal-poor stars in APOGEE DR13
- Short Name:
- J/ApJ/852/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We find two chemically distinct populations separated relatively cleanly in the [Fe/H]-[Mg/Fe] plane, but also distinguished in other chemical planes, among metal-poor stars (primarily with metallicities [Fe/H]<-0.9) observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of the Sloan Digital Sky Survey. These two stellar populations show the most significant differences in their [X/Fe] ratios for the {alpha}-elements, C+N, Al, and Ni. In addition to these populations having differing chemistry, the low metallicity high-Mg population (which we denote "the HMg population") exhibits a significant net Galactic rotation, whereas the low-Mg population (or "the LMg population") has halo-like kinematics with little to no net rotation. Based on its properties, the origin of the LMg population is likely an accreted population of stars. The HMg population shows chemistry (and to an extent kinematics) similar to the thick disk, and is likely associated with in situ formation. The distinction between the LMg and HMg populations mimics the differences between the populations of low- and high-{alpha} halo stars found in previous studies, suggesting that these are samples of the same two populations.
- ID:
- ivo://CDS.VizieR/J/AJ/156/213
- Title:
- Properties of N2K stars & new gas giant companions
- Short Name:
- J/AJ/156/213
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The N2K planet search program was designed to exploit the planet-metallicity correlation by searching for gas giant planets orbiting metal-rich stars. Here, we present the radial velocity measurements for 378 N2K target stars that were observed with the HIRES spectrograph at Keck Observatory between 2004 and 2017. With this data set, we announce the discovery of six new gas giant exoplanets: a double-planet system orbiting HD 148164 (Msini of 1.23 and 5.16 M_JUP_) and single planet detections around HD 55696 (Msini=3.87 M_JUP_), HD 98736 (Msini=2.33 M_JUP_), HD 203473 (Msini=7.8 M_JUP_), and HD 211810 (Msini=0.67 M_JUP_). These gas giant companions have orbital semimajor axes between 1.0 and 6.2 au and eccentricities ranging from 0.13 to 0.71. We also report evidence for three gravitationally bound companions with Msini between 20 and 30 M_JUP_, placing them in the mass range of brown dwarfs, around HD 148284, HD 214823, and HD 217850, and four low-mass stellar companions orbiting HD 3404, HD 24505, HD 98630, and HD 103459. In addition, we present updated orbital parameters for 42 previously announced planets. We also report a nondetection of the putative companion HD 73256 b. Finally, we highlight the most promising candidates for direct imaging and astrometric detection, and we find that many hot Jupiters from our sample could be detectable by state-of-the-art telescopes such as Gaia.
- ID:
- ivo://CDS.VizieR/J/ApJ/807/127
- Title:
- Properties of 70 RR Lyrae stars in the LMC bar
- Short Name:
- J/ApJ/807/127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results of the analysis of 70 RR Lyrae stars located in the bar of the Large Magellanic Cloud (LMC). Combining the spectroscopically determined metallicity of these stars from the literature with precise periods from the OGLE III catalog (Soszynski et al. 2009, J/AcA/59/1) and multi-epoch K_s_ photometry from the VISTA survey of the Magellanic Clouds system, we derive a new near-infrared period-luminosity-metallicity (PL_Ks_Z) relation for RR Lyrae variables. In order to fit the relation we use a fitting method developed specifically for this study. The zero-point of the relation is estimated two different ways: by assuming the value of the distance to the LMC and by using Hubble Space Telescope parallaxes of five RR Lyrae stars in the Milky Way (MW). The difference in distance moduli derived by applying these two approaches is ~0.2 mag. To investigate this point further we derive the PL_Ks_Z relation based on 23 MW RR Lyrae stars that had been analyzed in Baade-Wesselink studies. We compared the derived PL_Ks_Z relations for RR Lyrae stars in the MW and LMC. Slopes and zero-points are different, but still consistent within the errors. The shallow slope of the metallicity term is confirmed by both LMC and MW variables. The astrometric space mission Gaia is expected to provide a huge contribution to the determination of the RR Lyrae PL_Ks_Z relation; however, calculating an absolute magnitude from the trigonometric parallax of each star and fitting a PL_Ks_Z relation directly to period and absolute magnitude leads to biased results. We present a tool to achieve an unbiased solution by modeling the data and inferring the slope and zero-point of the relation via statistical methods.
1117. Properties of Sgr Stars
- ID:
- ivo://CDS.VizieR/J/ApJ/889/63
- Title:
- Properties of Sgr Stars
- Short Name:
- J/ApJ/889/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using 3D positions and kinematics of stars relative to the Sagittarius (Sgr) orbital plane and angular momentum, we identify 166 Sgr stream members observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) that also have Gaia DR2 astrometry. This sample of 63/103 stars in the Sgr trailing/leading arm is combined with an APOGEE sample of 710 members of the Sgr dwarf spheroidal core (385 of them newly presented here) to establish differences of 0.6dex in median metallicity and 0.1dex in [{alpha}/Fe] between our Sgr core and dynamically older stream samples. Mild chemical gradients are found internally along each arm, but these steepen when anchored by core stars. With a model of Sgr tidal disruption providing estimated dynamical ages (i.e., stripping times) for each stream star, we find a mean metallicity gradient of 0.12+/-0.03dex/Gyr for stars stripped from Sgr over time. For the first time, an [{alpha}/Fe] gradient is also measured within the stream, at 0.02_/-0.01dex/Gyr using magnesium abundances and at 0.04+/-0.01dex/Gyr^ using silicon, which imply that the Sgr progenitor had significant radial abundance gradients. We discuss the magnitude of those inferred gradients and their implication for the nature of the Sgr progenitor within the context of the current family of Milky Way satellite galaxies, and we suggest that more sophisticated Sgr models are needed to properly interpret the growing chemodynamical detail we have on the Sgr system.
- ID:
- ivo://CDS.VizieR/J/ApJ/859/L8
- Title:
- Properties of TriAnd stars
- Short Name:
- J/ApJ/859/L8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The nature of the Triangulum-Andromeda (TriAnd) system has been debated since the discovery of this distant, low-latitude Milky Way (MW) overdensity more than a decade ago. Explanations for its origin are either as a halo substructure from the disruption of a dwarf galaxy, or a distant extension of the Galactic disk. We test these hypotheses using the chemical abundances of a dozen TriAnd members from the Sloan Digital Sky Survey-IV's (SDSS-IV's) 14th Data Release (DR14) of Apache Point Observatory Galactic Evolution Experiment (APOGEE) data to compare to APOGEE abundances of stars with similar metallicity from both the Sagittarius (Sgr) dSph and the outer MW disk. We find that TriAnd stars are chemically distinct from Sgr across a variety of elements, (C+N), Mg, K, Ca, Mn, and Ni, with a separation in [X/Fe] of about 0.1 to 0.4dex depending on the element. Instead, the TriAnd stars, with a median metallicity of about -0.8, exhibit chemical abundance ratios similar to those of the lowest metallicity ([Fe/H]~-0.7) stars in the outer Galactic disk, and are consistent with expectations of extrapolated chemical gradients in the outer disk of the MW. These results suggest that TriAnd is associated with the MW disk, and, therefore, that the disk extends to this overdensity-i.e., past a Galactocentric radius of 24kpc-albeit vertically perturbed about 7kpc below the nominal disk midplane in this region of the Galaxy.
- ID:
- ivo://CDS.VizieR/J/ApJ/838/83
- Title:
- Radial velocities, abundances & membership in TriII
- Short Name:
- J/ApJ/838/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Among the Milky Way satellites discovered in the past three years, Triangulum II has presented the most difficulty in revealing its dynamical status. Kirby+ (2015ApJ...814L...7K) identified it as the most dark-matter-dominated galaxy known, with a mass-to-light ratio within the half-light radius of 3600_-2100_^+3500^M_{sun}_/L_{sun}_. On the other hand, Martin+ (2016ApJ...818...40M) measured an outer velocity dispersion that is 3.5+/-2.1 times larger than the central velocity dispersion, suggesting that the system might not be in equilibrium. From new multi-epoch Keck/DEIMOS measurements of 13 member stars in Triangulum II, we constrain the velocity dispersion to be {sigma}_v_<3.4km/s (90%C.L.). Our previous measurement of {sigma}_v_, based on six stars, was inflated by the presence of a binary star with variable radial velocity. We find no evidence that the velocity dispersion increases with radius. The stars display a wide range of metallicities, indicating that Triangulum II retained supernova ejecta and therefore possesses, or once possessed, a massive dark matter halo. However, the detection of a metallicity dispersion hinges on the membership of the two most metal-rich stars. The stellar mass is lower than galaxies of similar mean stellar metallicity, which might indicate that Triangulum II is either a star cluster or a tidally stripped dwarf galaxy. Detailed abundances of one star show heavily depressed neutron-capture abundances, similar to stars in most other ultra-faint dwarf galaxies but unlike stars in globular clusters.
- ID:
- ivo://CDS.VizieR/J/A+A/526/A112
- Title:
- Radial velocities of HARPS metal-poor sample
- Short Name:
- J/A+A/526/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Searching for extrasolar planets around stars of different metallicity may provide strong constraints to the models of planet formation and evolution. In this paper we present the overall results of a HARPS (a high-precision spectrograph mostly dedicated to deriving precise radial velocities) program to search for planets orbiting a sample of 104 metal-poor stars (selected [Fe/H] below -0.5). Radial velocity time series of each star are presented and searched for signals using several statistical diagnostics. tars with detected signals are presented, including 3 attributed to the presence of previously announced giant planets orbiting the stars HD171028, HD181720, and HD190984. Several binary stars and at least one case of a coherent signal caused by activity-related phenomena are presented. One very promising new, possible giant planet orbiting the star HD107094 is discussed, and the results are analyzed in light of the metallicity-giant planet correlation. We conclude that the frequency of giant planets orbiting metal-poor stars may be higher than previously thought, probably reflecting the higher precision of the HARPS survey. In the metallicity domain of our sample, we also find evidence that the frequency of planets is a steeply rising function of the stellar metal content, as found for higher metallicity stars.