- ID:
- ivo://CDS.VizieR/J/ApJ/737/9
- Title:
- RAVE spectroscopic data of stars in the thick disk
- Short Name:
- J/ApJ/737/9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have undertaken the study of the elemental abundances and kinematic properties of a metal-poor sample of candidate thick-disk stars selected from the Radial Velocity Experiment spectroscopic survey of bright stars to differentiate among the present scenarios of the formation of the thick disk. In this paper, we report on a sample of 214 red giant branch, 31 red clump/horizontal branch, and 74 main-sequence/sub-giant branch metal-poor stars, which serves to augment our previous sample of only giant stars. We find that the thick disk [{alpha}/Fe] ratios are enhanced and have little variation (<0.1dex), in agreement with our previous study. The augmented sample further allows, for the first time, investigation of the gradients in the metal-poor thick disk.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/142/193
- Title:
- RAVE stellar elemental abundances (DR1)
- Short Name:
- J/AJ/142/193
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present chemical elemental abundances for 36561 stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes |b|>25{deg} and with magnitudes in the range 9<I_DENIS_<13. RAVE spectra cover the Ca-triplet region at 8410-8795{AA} with resolving power R~7500. This first data release of the RAVE chemical catalog is complementary to the third RAVE data release of radial velocities and stellar parameters, and it contains chemical abundances for the elements Mg, Al, Si, Ca, Ti, Fe, and Ni, with a mean error of ~0.2dex, as judged from accuracy tests performed on synthetic and real spectra. Abundances are estimated through a dedicated processing pipeline in which the curve of growth of individual lines is obtained from a library of absorption line equivalent widths to construct a model spectrum that is then matched to the observed spectrum via a {chi}^2^ minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.
- ID:
- ivo://CDS.VizieR/J/ApJ/858/L7
- Title:
- Red clump stars selected from LAMOST and APOGEE
- Short Name:
- J/ApJ/858/L7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Core helium-burning red clump (RC) stars are excellent standard candles in the Milky Way. These stars may have more precise distance estimates from spectrophotometry than from Gaia parallaxes beyond 3kpc. However, RC stars have values of Teff and logg that are very similar to some red giant branch (RGB) stars. Especially for low-resolution spectroscopic studies where Teff, logg, and [Fe/H] can only be estimated with limited precision, separating RC stars from RGB through established methods can incur ~20% contamination. Recently, Hawkins+ (2018ApJ...853...20H) demonstrated that the additional information in single-epoch spectra, such as the C/N ratio, can be exploited to cleanly differentiate RC and RGB stars. In this second paper of the series, we establish a data-driven mapping from spectral flux space to independently determined asteroseismic parameters, the frequency and the period spacing. From this, we identify 210371 RC stars from the publicly available LAMOST DR3 and APOGEE DR14 data, with ~9% of contamination. We provide an RC sample of 92249 stars with a contamination of only ~3%, by restricting the combined analysis to LAMOST stars with S/N_pix_>=75. This demonstrates that high-signal-to-noise ratio (S/N), low-resolution spectra covering a broad wavelength range can identify RC samples at least as pristine as their high- resolution counterparts. As coming and ongoing surveys such as TESS, DESI, and LAMOST will continue to improve the overlapping training spectroscopic-asteroseismic sample, the method presented in this study provides an efficient and straightforward way to derive a vast yet pristine sample of RC stars to reveal the three-dimensional (3D) structure of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/870/115
- Title:
- Reddening, distance modulus & Fe/H of RRLs in w Cen
- Short Name:
- J/ApJ/870/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We developed a new approach to provide accurate estimates of the metal content, reddening, and true distance modulus of RR Lyrae stars (RRLs). The method is based on homogeneous optical (BVI) and near-infrared (JHK) mean magnitudes and on predicted period-luminosity-metallicity relations (IJHK) and absolute mean magnitude-metallicity relations (BV). We obtained solutions for three different RRL samples in {omega}Cen: first overtone (RRc, 90), fundamental (RRab, 80), and global (RRc+RRab) in which the period of first overtones were fundamentalized. The metallicity distribution shows a well defined peak at [Fe/H]~-1.98 and a standard deviation of {sigma}=0.54dex. The spread is, as expected, metal-poor ([Fe/H]<=-2.3) objects. The current metallicity distribution is ~0.3dex more metal-poor than similar estimates for RRLs available in the literature. The difference vanishes if the true distance modulus we estimated is offset by -0.06/-0.07mag in true distance modulus. We also found a cluster true distance modulus of {mu}=13.720{+/-}0.002{+/-}0.030mag, where the former error is the error on the mean and the latter is the standard deviation. Moreover, we found a cluster reddening of E(B-V)=0.132{+/-}0.002{+/-}0.028mag and spatial variations of the order of a few arcmin across the body of the cluster. Both the true distance modulus and the reddening are slightly larger than similar estimates available in the literature, but the difference is within 1{sigma}. The metallicity dependence of distance diagnostics agrees with theory and observations, but firm constraints require accurate and homogeneous spectroscopic measurements.
- ID:
- ivo://CDS.VizieR/J/ApJ/810/148
- Title:
- Red giant abundances in NGC 2808
- Short Name:
- J/ApJ/810/148
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The chemical composition of multiple populations in the massive globular cluster (GC) NGC 2808 is addressed with the homogeneous abundance reanalysis of 140 red giant branch stars. UVES spectra for 31 stars and GIRAFFE spectra for the other giants were analyzed with the same procedures used for about 2500 giants in 23 GCs in our FLAMES survey, deriving abundances of Fe, O, Na, Mg, Si, Ca, Ti, Sc, Cr, Mn, and Ni. Iron, elements from {alpha} capture, and those in the Fe group do not show intrinsic scatter. On our UVES scale, the metallicity of NGC 2808 is [Fe/H]=-1.29+/-0.005+/-0.034 (+/-statistical+/-systematic error) with {sigma}=0.030 (31 stars). The main features related to proton-capture elements are retrieved, but the improved statistics and the smaller associated internal errors allow us to uncover five distinct groups of stars along the Na-O anticorrelation. We observe large depletions in Mg, anticorrelated with enhancements of Na and also Si, suggestive of unusually high temperatures for proton captures. About 14% of our sample is formed by giants with solar or subsolar [Mg/Fe] ratios. Using the [Na/Mg] ratios, we confirm the presence of five populations with different chemical compositions that we call P1, P2, I1, I2, and E in order of decreasing Mg and increasing Na abundances. Statistical tests show that the mean ratios in any pair of groups cannot be extracted from the same parent distribution. The overlap with the five populations recently detected from UV photometry is good but not perfect, confirming that more distinct components probably exist in this complex GC.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A17
- Title:
- Red giant Aluminium abundances in NGC 2808
- Short Name:
- J/A+A/615/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We observed a sample of 90 red giant branch (RGB) stars in NGC 2808 using FLAMES/GIRAFFE and the high resolution grating with the set up HR21. These stars have previous accurate atmospheric parameters and abundances of light elements. We derived aluminium abundances for them from the strong doublet AlI 8772-8773 Angstrom as in previous works of our group. In addition, we were able to estimate the relative CN abundances for 89 of the stars from the strength of a large number of CN features. When adding self consistent abundances from previous UVES spectra analysed by our team, we gathered [Al/Fe] ratios for a total of 108 RGB stars in NGC 2808. The full dataset of proton-capture elements is used to explore in details the five spectroscopically detected discrete components in this globular cluster. We found that different classes of polluters are required to reproduce the (anti)-correlations among all proton-capture elements in the populations P2, I1, and I2 with intermediate composition. This is in agreement with the detection of lithium in lower RGB second generation stars, requiring at least two kind of polluters. To have chemically homogeneous populations the best subdivision of our sample is into six components, as derived from statistical cluster analysis. By comparing different diagrams [element/Fe] vs [element/Fe] we show for the first time that a simple dilution model is not able to reproduce all the sub-populations in this cluster. Polluters of different masses are required. NGC 2808 is confirmed to be a tough challenge to any scenario for globular cluster formation.
1137. Red giants in NGC 5286
- ID:
- ivo://CDS.VizieR/J/MNRAS/450/815
- Title:
- Red giants in NGC 5286
- Short Name:
- J/MNRAS/450/815
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a high-resolution spectroscopic analysis of 62 red giants in the Milky Way globular cluster (GC) NGC 5286. We have determined abundances of representative light proton-capture, {alpha}, Fe-peak and neutron-capture element groups, and combined them with photometry of multiple sequences observed along the colour-magnitude diagram. Our principal results are: (i) a broad, bimodal distribution in s-process element abundance ratios, with two main groups, the s-poor and s-rich groups; (ii) substantial star-to-star Fe variations, with the s-rich stars having higher Fe, e.g. <[Fe/H]_s-rich_-<[Fe/H]>_s-poor_~0.1dex; and (iii) the presence of O-Na-Al (anti)correlations in both stellar groups. We have defined a new photometric index, c_BVI_=(B-V)-(V-I), to maximize the separation in the colour-magnitude diagram between the two stellar groups with different Fe and s-element content, and this index is not significantly affected by variations in light elements (such as the O-Na anticorrelation). The variations in the overall metallicity present in NGC 5286 add this object to the class of anomalous GCs. Furthermore, the chemical abundance pattern of NGC 5286 resembles that observed in some of the anomalous GCs, e.g. M 22, NGC 1851, M 2, and the more extreme {omega} Centauri, that also show internal variations in s-elements, and in light elements within stars with different Fe and s-elements content. In view of the common variations in s-elements, we propose the term s-Fe-anomalous GCs to describe this sub-class of objects. The similarities in chemical abundance ratios between these objects strongly suggest similar formation and evolution histories, possibly associated with an origin in tidally disrupted dwarf satellites.
- ID:
- ivo://CDS.VizieR/J/MNRAS/442/1680
- Title:
- Red giants in SMC. Abundances
- Short Name:
- J/MNRAS/442/1680
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from the largest Caii triplet line metallicity study of Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037 objects spread across approximately 37.5deg^2^, centred on this galaxy. We find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an abundance gradient of -0.075+/-0.011dex/deg over the inner 5{deg}. We interpret the abundance gradient to be the result of an increasing fraction of young stars with decreasing galactocentric radius, coupled with a uniform global age-metallicity relation. We also demonstrate that the age-metallicity relation for an intermediate-age population located 10kpc in front of the north-east of the cloud is indistinguishable from that of the main body of the galaxy, supporting a prior conjecture that this is a stellar analogue of the Magellanic Bridge. The metal-poor and metal-rich quartiles of our red giant branch star sample (with complementary optical photometry from the Magellanic Clouds Photometric Survey) are predominantly older and younger than approximately 6Gyr, respectively. Consequently, we draw a link between a kinematical signature, tentatively associated by us with a disc-like structure, and the upsurges in stellar genesis imprinted on the star formation history of the central regions of the SMC. We conclude that the increase in the star formation rate around 5-6Gyr ago was most likely triggered by an interaction between the SMC and Large Magellanic Cloud.
1139. Red giants of NGC 1851
- ID:
- ivo://CDS.VizieR/J/A+A/658/A80
- Title:
- Red giants of NGC 1851
- Short Name:
- J/A+A/658/A80
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- NGC 1851 is one of several globular clusters for which multiple stellar populations of the subgiant branch have been clearly identified and a difference in metallicity detected. A crucial piece of information on the formation history of this cluster can be provided by the sum of A(C+N+O) abundances. However, these values have lacked a general consensus thus far. The separation of the subgiant branch can be based on age and/or A(C+N+O) abundance differences. Our main aim was to determine carbon, nitrogen, and oxygen abundances for evolved giants in the globular cluster NGC 1851 in order to check whether or not the double populations of stars are coeval. High-resolution spectra, observed with the FLAMES-UVES spectrograph on the ESO VLT telescope, were analysed using a differential model atmosphere method. Abundances of carbon were derived using spectral synthesis of the C 2 band heads at 5135 and 5635.5{AA}. The wavelength interval 6470-6490{AA}, with CN features, was analysed to determine nitrogen abundances. Oxygen abundances were determined from the [OI] line at 6300{AA}. Abundances of other chemical elements were determined from equivalent widths or spectral syntheses of unblended spectral lines. We provide abundances of up to 29 chemical elements for a sample of 45 giants in NGC 1851. The investigated stars can be separated into two populations with a difference of 0.07dex in the mean metallicity, 0.3dex in the mean C/N, and 0.35 dex in the mean s-process dominated element-to-iron abundance ratios [s/Fe]. No significant difference was determined in the mean values of A(C+N+O) as well as in abundance to iron ratios of carbon, {alpha}- and iron-peak-elements, and of europium. As the averaged A(C+N+O) values between the two populations do not differ, additional evidence is given that NGC 1851 is composed of two clusters, the metal-rich cluster being by about 0.6Gyr older than the metal-poor one. A global overview of NGC 1851 properties and the detailed abundances of chemical elements favour its formation in a dwarf spheroidal galaxy that was accreted by the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/795/52
- Title:
- Red giant star sample from SDSS
- Short Name:
- J/ApJ/795/52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained a sample of ~22000 red giant branch (RGB) stars based on stellar parameters, provided by the ninth data release of the Sloan Digital Sky Survey (Cat. V/139), and the CH(G)/MgH indices, measured from the included spectra. The Galactic rest-frame velocity of V_gsr_ versus longitude for the sample shows the existence of several groups of stars from globular clusters and known streams. Excluding these substructures, a sample of ~16000 RGB stars from the general field is used to investigate the properties of the thick disk, the inner halo, and the outer halo of our Galaxy. The metallicity and rotational velocity distributions are investigated for stars at 0 kpc<|Z|<10 kpc. It is found that the canonical thick disk dominates at 0 kpc<|Z|<2 kpc and its contribution becomes negligible at |Z|>3 kpc. The MWTD is present and overlaps with the inner halo at 1 kpc<|Z|<3 kpc. The inner halo starts at 2 kpc<|Z|<3 kpc and becomes the dominated population for 4 kpc<|Z|<10 kpc. For halo stars with |Z|>5 kpc, bimodal metallicity distributions are found for 20 kpc<|Z|<25 kpc and 35 kpc<RR<45 kpc, which suggests a dual halo, the inner and the outer halo, as reported in Carollo et al. (2007Natur.450.1020C) at low|Z| values. The peak of metallicity for the inner halo is at [Fe/H]~-1.6 and appears to be at [Fe/H]~-2.3 for the outer halo. The transition point from the inner to the outer halo is located at|Z|~20 kpc and RR~35 kpc.