- ID:
- ivo://CDS.VizieR/J/AJ/153/261
- Title:
- Red giant stellar parameters in the LMC bar
- Short Name:
- J/AJ/153/261
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report new spectroscopic observations obtained with the Michigan/Magellan Fiber System of 308 red giants (RGs) located in two fields near the photometric center of the bar of the Large Magellanic Cloud. This sample consists of 131 stars observed in previous studies (in one field) and 177 newly observed stars (in the second field) selected specifically to more reliably establish the metallicity and age distributions of the bar. For each star, we measure its heliocentric line-of-sight velocity, surface gravity, and metallicity from its high-resolution spectrum (effective temperatures come from photometric colors). The spectroscopic Hertzsprung-Russell diagrams- modulo small offsets in surface gravities-reveal good agreement with model isochrones. The mean metallicity of the 177-RG sample is [Fe/H]=-0.76+/-0.02 with a metallicity dispersion {sigma}=0.28+/-0.03. The corresponding metallicity distribution-corrected for selection effects-is well fitted by two Gaussian components: one metal-rich with a mean -0.66+/-0.02 and a standard deviation 0.17+/-0.01, and the other metal-poor with -1.20+/-0.24 and 0.41+/-0.06. The metal-rich and metal-poor populations contain approximately 85% and 15% of stars, respectively. We also confirm that the velocity dispersion in the bar center decreases significantly from 31.2+/-4.3 to 18.7+/-1.9km/s with increasing metallicity over the range -2.09 to -0.38. Individual stellar masses are estimated using the spectroscopic surface gravities and the known luminosities. We find that lower mass, hence older, RGs have larger metallicity dispersion and lower mean metallicity than the higher-mass, younger RGs. The estimated masses, however, extend to implausibly low values (~0.1M_{sun}_), making it impossible to obtain an absolute age-metallicity or age distribution of the bar.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/577/A18
- Title:
- Reduced CRIRES spectra around S multiplet 3
- Short Name:
- J/A+A/577/A18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sulphur is an important, volatile alpha element but its role in the Galactic chemical evolution is still uncertain. We derive the S abundances in RGB stars in three Galactic globular clusters (GC) that cover a wide metallicity range (-2.3<[Fe/H]<-1.2): M4, M22, and M30. The halo field stars show a large scatter in the [S/Fe] ratio in this metallicity span, which is inconsistent with canonical chemical evolution models. To date, very few measurements of [S/Fe] exist for stars in GCs, which are good tracers of the chemical enrichment of their environment. However, some light and alpha elements show star-to-star variations within individual GCs and it is yet unclear whether sulphur also varies between GC stars. We used the the infrared spectrograph CRIRES to obtain high-resolution (R~50000), high signal-to-noise (SNR~200 per px) spectra in the region of the SI multiplet 3 at 1045nm for 15 GC stars selected from the literature (6 stars in M4, 6 stars in M22 and 3 stars in M30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity. We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]=0.58+/-0.01+/-0.20dex (statistical and systematic error) for M4, [S/Fe]=0.57+/-0.01+/-0.19dex for M22, and [S/Fe]=0.55+/-0.02+/-0.16dex for M30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. With the tentative exception of two stars with measured high S abundances, we conclude that sulphur behaves like a typical alpha element in the studied Galactic GCs, showing enhanced abundances with respect to the solar value at metallicities below [Fe/H]=-1.0dex without a considerable spread.
- ID:
- ivo://CDS.VizieR/J/A+A/646/A72
- Title:
- Resolved molecular line observations
- Short Name:
- J/A+A/646/A72
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. Recent studies allude to an early start to planet formation already ongoing during the formation of a disk. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, HCO^+^, HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in local thermodynamical equilibrium (LTE) as well as through more detailed non-LTE radiative transfer calculations. From the derived HCO^+^ abundance, we estimate the ionization fraction of the disk surface and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disk's molecular abundances relative to Solar System objects. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and H_2_O molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.
- ID:
- ivo://CDS.VizieR/J/ApJS/229/30
- Title:
- Revised stellar properties of Q1-17 Kepler targets
- Short Name:
- J/ApJS/229/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius, and mass) of the observed stars. We present revised stellar properties for 197096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1-16 catalog by Huber+ (2014, J/ApJS/211/2), the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted method and over 29000 new sources for temperatures, surface gravities, or metallicities. In addition to fundamental stellar properties, the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ~27% in radius, ~17% in mass, and ~51% in density, which is somewhat smaller than previous catalogs because of the larger number of improved logg constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with a particular focus on exoplanet host stars.
- ID:
- ivo://CDS.VizieR/J/ApJS/211/2
- Title:
- Revised stellar properties of Q1-16 Kepler targets
- Short Name:
- J/ApJS/211/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present revised properties for 196468 stars observed by the NASA Kepler mission and used in the analysis of Quarter 1-16 (Q1-16; May 2009 to Dec 2012) data to detect and characterize transiting planets. The catalog is based on a compilation of literature values for atmospheric properties (temperature, surface gravity, and metallicity) derived from different observational techniques (photometry, spectroscopy, asteroseismology, and exoplanet transits), which were then homogeneously fitted to a grid of Dartmouth stellar isochrones. We use broadband photometry and asteroseismology to characterize 11532 Kepler targets which were previously unclassified in the Kepler Input Catalog (KIC). We report the detection of oscillations in 2762 of these targets, classifying them as giant stars and increasing the number of known oscillating giant stars observed by Kepler by ~20% to a total of ~15500 stars. Typical uncertainties in derived radii and masses are ~40% and ~20%, respectively, for stars with photometric constraints only, and 5%-15% and ~10% for stars based on spectroscopy and/or asteroseismology, although these uncertainties vary strongly with spectral type and luminosity class. A comparison with the Q1-Q12 catalog shows a systematic decrease in radii of M dwarfs, while radii for K dwarfs decrease or increase depending on the Q1-Q12 provenance (KIC or Yonsei-Yale isochrones). Radii of F-G dwarfs are on average unchanged, with the exception of newly identified giants. The Q1-Q16 star properties catalog is a first step toward an improved characterization of all Kepler targets to support planet-occurrence studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/889/177
- Title:
- RGB abundances in the disk, stream & halo of M31
- Short Name:
- J/ApJ/889/177
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We measured [Fe/H] and [{alpha}/Fe] using spectral synthesis of low-resolution stellar spectroscopy for 70 individual red-giant-branch stars across four fields spanning the outer disk, Giant Stellar Stream (GSS), and inner halo of M31. Fields at M31-centric projected distances of 23kpc in the halo, 12kpc in the halo, 22kpc in the GSS, and 26kpc in the outer disk are {alpha}-enhanced, with <[{alpha}/Fe]>=0.43, 0.50, 0.41, and 0.58, respectively. The 23 and 12kpc halo fields are relatively metal-poor, with <[Fe/H]>=-1.54 and -1.30, whereas the 22kpc GSS and 26kpc outer disk fields are relatively metal-rich with <[Fe/H]>=-0.84 and -0.92, respectively. For fields with substructure, we separated the stellar populations into kinematically hot stellar halo components and kinematically cold components. We did not find any evidence of a radial [{alpha}/Fe] gradient along the high surface brightness core of the GSS between ~17 and 22kpc. However, we found tentative suggestions of a negative radial [{alpha}/Fe] gradient in the stellar halo, which may indicate that different progenitor(s) or formation mechanisms contributed to the build up of the inner versus outer halo. Additionally, the [{alpha}/Fe] distribution of the metal-rich ([Fe/H]>-1.5), smooth inner stellar halo (r_proj_<~26kpc) is inconsistent with having formed from the disruption of a progenitor(s) similar to present-day M31 satellite galaxies. The 26kpc outer disk is most likely associated with the extended disk of M31, where its high {alpha}-enhancement provides support for an episode of rapid star formation in M31's disk possibly induced by a major merger.
- ID:
- ivo://CDS.VizieR/J/AJ/155/71
- Title:
- RGB & HB members of the bulge cluster NGC 6569
- Short Name:
- J/AJ/155/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster's detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan-M2FS and VLT-FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of -48.8 km/s ({sigma}=5.3 km/s; 148 stars) and <[Fe/H]>=-0.87 dex (19 stars), but the cluster's 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster's low <[La/Eu]>=-0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as {Delta}Y~0.02 cannot be ruled out and may be sufficient to reproduce the double HB.
- ID:
- ivo://CDS.VizieR/J/A+A/590/A9
- Title:
- RGB stars in Galactic GC stellar parameters
- Short Name:
- J/A+A/590/A9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. We aim to obtain homogeneous metallicities and alpha-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. We observed R~2000 spectra in the wavelength interval 456-586nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. [Fe/H], [Mg/Fe], and [alpha/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within sigma=0.08dex over the interval -2.5<[Fe/H]<0.0. Further, a comparison of previous metallicity scales with ours yields sigma<0.16dex. We also find that the distribution of [Mg/Fe] and [alpha/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters are included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, the first three clusters only had photometric metallicities previously and the available metallicity for NGC 6426 was based only on integrated spectroscopy and photometry. Two other clusters, HP 1 and NGC 6558, are confirmed as candidates for the oldest globular clusters in the Milky Way. Stellar spectroscopy in the visible at R~2000 for a large sample of globular clusters is a robust and efficient way to trace the chemical evolution of the host galaxy and to detect interesting objects for follow-up at higher-resolution and with forthcoming giant telescopes. The technique used here can also be applied to globular cluster systems in nearby galaxies with current instruments and to distant galaxies with the advent of ELTs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/456/4315
- Title:
- RGB stars in NGC 6822, Ca II triplet
- Short Name:
- J/MNRAS/456/4315
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at ~8500{AA} was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line-of-sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be <v_rad_>=-52.8+/-2.2km/s with dispersion {sigma}_v_=24.1km/s, in agreement with other studies. Ca ii triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was <[Fe/H]>=-0.84+/-0.04 with dispersion {sigma}=0.31dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former were found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars was found to be higher than that of the metal-rich stars {sigma}_vMP_=27.4km/s; {sigma}_vMR_=21.1km/s); combined with the age-metallicity relation this indicates that the older populations have either been dynamically heated during their lifetimes or were born in a less disc-like distribution than the younger stars.. The low ratio v_rot_/{sigma}_v_ suggests that within the inner 10-arcmin, NGC 6822's stars are dynamically decoupled from the HI gas, and possibly distributed in a thick disc or spheroid structure.
- ID:
- ivo://CDS.VizieR/J/A+A/464/201
- Title:
- RGB stars in Sagittarius streams
- Short Name:
- J/A+A/464/201
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Sagittarius (Sgr) dwarf spheroidal galaxy is currently being disrupted under the strain of the Milky Way. A reliable reconstruction of Sgr star formation history can only be obtained by combining core and stream information. We present radial velocities for 67 stars belonging to the Sgr Stream. For 12 stars in the sample we also present iron (Fe) and {alpha}-element (Mg, Ca) abundances.