- ID:
- ivo://CDS.VizieR/J/A+A/498/527
- Title:
- Calibration of Stromgren phot. for late-type stars
- Short Name:
- J/A+A/498/527
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The use of model atmospheres for deriving stellar fundamental parameters, such as Teff, log(g), and [Fe/H], will increase as we find and explore extreme stellar populations where empirical calibrations are not yet available. Moreover, calibrations for upcoming large satellite missions of new spectrophotometric indices, similar to the uvby-Hbeta system, will be needed. We aim to test the power of theoretical calibrations based on a new generation of MARCS models by comparisons with observational photometric data. We calculated synthetic uvby-Hbeta colour indices from synthetic spectra. A sample of 367 field stars, as well as stars in globular clusters, is used for a direct comparison of the synthetic indices versus empirical data and for scrutizing the possibilities of theoretical calibrations for temperature, metallicity, and gravity. We show that the temperature sensitivity of the synthetic (b-y) colour is very close to its empirical counterpart, whereas the temperature scale based upon Hbeta shows a slight offset. The theoretical metallicity sensitivity of the m1 index (and for G-type stars its combination with c1) is somewhat higher than the empirical one, based upon spectroscopic determinations. The gravity sensitivity of the synthetic c1 index shows satisfactory behaviour when compared to observations of F stars. For stars cooler than the sun, a deviation is significant in the c1-(b-y) diagram. The theoretical calibrations of (b-y), (v-y), and c1 seem to work well for Pop II stars and lead to effective temperatures for globular cluster stars supporting recent claims that atomic diffusion occurs in stars near the turnoff point of NGC 6397. Synthetic colours of stellar atmospheres can indeed be used, in many cases, to derive reliable fundamental stellar parameters. The deviations seen when compared to observational data could be due to incomplete linelists but are possibly also due to the effects of assuming plane-parallel or spherical geometry and LTE.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/other/PASA/37.22
- Title:
- Calibration sample UBV and GALEX photometry
- Short Name:
- J/other/PASA/37.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive transformation equations between GALEX and UBV colours by using the reliable data of 556 stars. We present two sets of equations: as a function of (only) luminosity class and as a function of both luminosity class and metallicity. The metallicities are provided from the literature, while the luminosity classes are determined by using the PARSEC mass tracks in this study. Small colour residuals and high squared correlation coefficients promise accurate derived colours. The application of the transformation equations to 70 stars with reliable data shows that the metallicity plays an important role in estimation of more accurate colours.
- ID:
- ivo://CDS.VizieR/J/MNRAS/492/3073
- Title:
- CALIFA galaxies hosting an AGN
- Short Name:
- J/MNRAS/492/3073
- Date:
- 02 Feb 2022 07:33:25
- Publisher:
- CDS
- Description:
- We study the presence of optically-selected Active Galactic Nuclei (AGNs) within a sample of 867 galaxies extracted from the extended Calar-Alto Legacy Integral Field spectroscopy Area (eCALIFA) spanning all morphological classes. We identify 10 Type-I and 24 Type-II AGNs, amounting to ~4 per cent of our sample, similar to the fraction reported by previous explorations in the same redshift range. We compare the integrated properties of the ionized and molecular gas, and stellar population of AGN hosts and their non-active counterparts, combining them with morphological information. The AGN hosts are found in transitory parts (i.e. green-valley) in almost all analysed properties which present bimodal distributions (i.e. a region where reside star-forming galaxies and another with quiescent/retired ones). Regarding morphology, we find AGN hosts among the most massive galaxies, with enhanced central stellar-mass surface density in comparison to the average population at each morphological type. Moreover, their distribution peaks at the Sab-Sb classes and none are found among very late-type galaxies (>Scd). Finally, we inspect how the AGN could act in heir hosts regarding the quenching of star-formation. The main role of the AGN in the quenching process appears to be the removal (or heating) of molecular gas, rather than an additional suppression of the already observed decrease of the star-formation efficiency from late-to-early type galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/595/A62
- Title:
- CALIFA galaxies O/H and N/O slopes
- Short Name:
- J/A+A/595/A62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The study of the integrated properties of star-forming galaxies is central to understand their formation and evolution. Some of these properties are extensive and therefore their analysis require totally covering and spatially resolved observations. Among these properties, metallicity can be defined in spiral discs by means of integral field spectroscopy (IFS) of individual HII regions. The simultaneous analysis of the abundances of primary elements, as oxygen, and secondary, as nitrogen, also provides clues about the star formation history and the processes that shape the build-up of spiral discs. Our main aim is to analyse simultaneously O/H and N/O abundance ratios in HII regions in different radial positions of the discs in a large sample of spiral galaxies to obtain the slopes and the characteristic abundance ratios that can be related to their integrated properties. We analysed the optical spectra of individual selected HII regions extracted from a sample of 350 spiral galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine HII-CHI-MISTRY, which, according to Perez-Montero (2014MNRAS.441.2663P), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [NII] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances.
- ID:
- ivo://CDS.VizieR/J/AJ/154/108
- Title:
- California-Kepler Survey (CKS). II. Properties
- Short Name:
- J/AJ/154/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.
- ID:
- ivo://CDS.VizieR/J/AJ/154/107
- Title:
- California-Kepler Survey (CKS). I. 1305 stars
- Short Name:
- J/AJ/154/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA's Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited (K_p_<14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60K in T_eff_, 0.10dex in logg, 0.04dex in [Fe/H], and 1.0km/s in Vsini. In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses.
- ID:
- ivo://CDS.VizieR/J/AJ/156/264
- Title:
- California-Kepler Survey. VII. Planet radius gap
- Short Name:
- J/AJ/156/264
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The distribution of planet sizes encodes details of planet formation and evolution. We present the most precise planet size distribution to date based on Gaia parallaxes, Kepler photometry, and spectroscopic temperatures from the California-Kepler Survey. Previously, we measured stellar radii to 11% precision using high-resolution spectroscopy; by adding Gaia astrometry, the errors are now 3%. Planet radius measurements are, in turn, improved to 5% precision. With a catalog of ~1000 planets with precise properties, we probed in fine detail the gap in the planet size distribution that separates two classes of small planets, rocky super-Earths and gas-dominated sub-Neptunes. Our previous study and others suggested that the gap may be observationally under-resolved and inherently flat-bottomed, with a band of forbidden planet sizes. Analysis based on our new catalog refutes this; the gap is partially filled in. Two other important factors that sculpt the distribution are a planet's orbital distance and its host-star mass, both of which are related to a planet's X-ray/UV irradiation history. For lower-mass stars, the bimodal planet distribution shifts to smaller sizes, consistent with smaller stars producing smaller planet cores. Details of the size distribution including the extent of the "sub-Neptune desert" and the width and slope of the gap support the view that photoevaporation of low-density atmospheres is the dominant evolutionary determinant of the planet size distribution.
- ID:
- ivo://CDS.VizieR/J/AJ/156/254
- Title:
- California-Kepler Survey.VI. Kepler multis & singles
- Short Name:
- J/AJ/156/254
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The California-Kepler Survey (CKS) catalog contains precise stellar and planetary properties for the Kepler planet candidates, including systems with multiple detected transiting planets ("multis") and systems with just one detected transiting planet ("singles", although additional planets could exist). We compared the stellar and planetary properties of the multis and singles in a homogeneous subset of the full CKS-Gaia catalog. We found that sub-Neptune-sized singles and multis do not differ in their stellar properties or planet radii. In particular: (1) The distributions of stellar properties M_*_, [Fe/H], and vsini for the Kepler sub-Neptune-sized singles and multis are statistically indistinguishable. (2) The radius distributions of the sub-Neptune-sized singles and multis with P>3 days are indistinguishable, and both have a valley at ~1.8 R_{Earth}_. However, there are significantly more detected short-period (P<3 days), sub-Neptune-sized singles than multis. The similarity of the host-star properties, planet radii, and radius valley for singles and multis suggests a common origin. The similar radius valley, which is likely sculpted by photo-evaporation from the host star within the first 100 Myr, suggests that planets in both singles and multis spend much of the first 100 Myr near their present, close-in locations. One explanation that is consistent with the similar fundamental properties of singles and multis is that many of the singles are members of multi-planet systems that underwent planet-planet scattering.
- ID:
- ivo://CDS.VizieR/J/ApJ/770/90
- Title:
- Candidate planets in the habitable zones
- Short Name:
- J/ApJ/770/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A key goal of the Kepler mission is the discovery of Earth-size transiting planets in "habitable zones" where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p_HZ_ that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p_HZ_. Sixty-two planets have p_HZ_>0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}_{Earth}_) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.
- ID:
- ivo://CDS.VizieR/J/AJ/130/1177
- Title:
- C and N abundances for M15 stars
- Short Name:
- J/AJ/130/1177
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of a large sample of moderate-resolution Keck Low Resolution Imaging Spectrometer spectra of subgiants and stars at the base of the red giant branch (RGB) in the Galactic globular cluster (GC) M15 (NGC 7078), most within the range 16.5<V<19.5 (1.2<M_V_<4.2), with the goal of deriving C abundances (from the G band of CH) and N abundances (from the NH band at 3360{AA}).