- ID:
- ivo://CDS.VizieR/J/ApJ/897/83
- Title:
- Component structure in the neightborhood of IC 443
- Short Name:
- J/ApJ/897/83
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant (SNR) IC443. Our analysis is based on a comprehensive examination of high-resolution far-ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope of two stars behind IC443. One of our targets (HD43582) probes gas along the entire line of sight through the SNR, while the other (HD254755) samples material located ahead of the primary supernova shock front. We identify low-velocity quiescent gas in both directions and find that the densities and temperatures in these components are typical of diffuse atomic and molecular clouds. Numerous high- velocity components are observed in the absorption profiles of neutral and singly ionized atomic species toward HD43582. These components exhibit a combination of greatly enhanced thermal pressures and significantly reduced dust-grain depletions. We interpret this material as cooling gas in a recombination zone far downstream from shocks driven into neutral gas clumps. The pressures derived for a group of ionized gas components at high positive velocity toward HD43582 are lower than those of the other shocked components, pointing to pressure inhomogeneities across the remnant. A strong, very high velocity component near -620km/s is seen in the absorption profiles of highly ionized species toward HD43582. The velocity of this material is consistent with the range of shock velocities implied by observations of soft thermal X-ray emission from IC443. Moderately high velocity gas toward HD254755 may represent shocked material from a separate foreground SNR.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/608/A46
- Title:
- Constraining cosmic scatter
- Short Name:
- J/A+A/608/A46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the stellar parameters, abundances, associated errors and the linelist of a set of 23 metal-poor and very metal-poor halo stars. Stellar parameters and chemical abundances were derived in a line-by-line differential analysis from equivalent widths of UVES/VLT spectra. The differential analysis provided us unprecedented small data scatter and errors. Our sample, along with data from different authors in different metallicity ranges, allowed us to do an extensive comparison of the chemical abundances with the predictions of a Galaxy chemical evolution model.
- ID:
- ivo://CDS.VizieR/J/AJ/158/87
- Title:
- 86 cool dwarfs observed during K2 Campaigns 1-17
- Short Name:
- J/AJ/158/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present revised stellar properties for 172 K2 target stars that were identified as possible hosts of transiting planets during Campaigns 1-17. Using medium-resolution near-infrared spectra acquired with the NASA Infrared Telescope Facility/SpeX and Palomar/TripleSpec, we found that 86 of our targets were bona fide cool dwarfs, 74 were hotter dwarfs, and 12 were giants. Combining our spectroscopic metallicities with Gaia parallaxes and archival photometry, we derived photometric stellar parameters and compared them to our spectroscopic estimates. Although our spectroscopic and photometric radius and temperature estimates are consistent, our photometric mass estimates are systematically {Delta}M_*_=0.11 M_{sun}_ (34%) higher than our spectroscopic mass estimates for the least massive stars (M_*,phot_<0.4 M_{sun}_). Adopting the photometric parameters and comparing our results to parameters reported in the Ecliptic Plane Input Catalog, our revised stellar radii are {Delta}R_*_=0.15 R_{sun}_ (40%) larger, and our revised stellar effective temperatures are roughly {Delta}T_eff_=65 K cooler. Correctly determining the properties of K2 target stars is essential for characterizing any associated planet candidates, estimating the planet search sensitivity, and calculating planet occurrence rates. Even though Gaia parallaxes have increased the power of photometric surveys, spectroscopic characterization remains essential for determining stellar metallicities and investigating correlations between stellar metallicity and planetary properties.
- ID:
- ivo://CDS.VizieR/J/MNRAS/467/4970
- Title:
- Cool DZ white dwarfs. I.
- Short Name:
- J/MNRAS/467/4970
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- White dwarfs with metal lines in their spectra act as signposts for post-main-sequence planetary systems. Searching the Sloan Digital Sky Survey (SDSS) Data Release 12, we have identified 231 cool (<9000K) DZ white dwarfs with strong metal absorption, extending the DZ cooling sequence to both higher metal abundances and lower temperatures, and hence longer cooling ages. Of these 231 systems, 104 are previously unknown white dwarfs. Compared with previous work, our spectral fitting uses improved model atmospheres with updated line profiles and line-lists, which we use to derive effective temperatures and abundances for up to eight elements. We also determine spectroscopic distances to our sample, identifying two halo members with tangential space velocities >300km/s. The implications of our results on remnant planetary systems are to be discussed in a separate paper.
- ID:
- ivo://CDS.VizieR/J/ApJS/213/5
- Title:
- Cool KOIs. VI. H- and K- band spectra
- Short Name:
- J/ApJS/213/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present H- and K-band spectra for late-type Kepler Objects of Interest (the "Cool KOIs"): low-mass stars with transiting-planet candidates discovered by NASA's Kepler Mission that are listed on the NASA Exoplanet Archive. We acquired spectra of 103 Cool KOIs and used the indices and calibrations of Rojas-Ayala et al. (2012, Cat. J/ApJ/748/93) to determine their spectral types, stellar effective temperatures, and metallicities, significantly augmenting previously published values. We interpolate our measured effective temperatures and metallicities onto evolutionary isochrones to determine stellar masses, radii, luminosities, and distances, assuming the stars have settled onto the main sequence. As a choice of isochrones, we use a new suite of Dartmouth predictions that reliably include mid-to-late M dwarf stars. We identify five M4V stars: KOI-961 (confirmed as Kepler 42), KOI-2704, KOI-2842, KOI-4290, and the secondary component to visual binary KOI-1725, which we call KOI-1725B. We also identify a peculiar star, KOI-3497, which has Na and Ca lines consistent with a dwarf star but CO lines consistent with a giant. Visible-wavelength adaptive optics imaging reveals two objects within a 1 arcsec diameter; however, the objects' colors are peculiar. The spectra and properties presented in this paper serve as a resource for prioritizing follow-up observations and planet validation efforts for the Cool KOIs.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/63
- Title:
- Cool WD atmosphere models. IV. Spectral evolution
- Short Name:
- J/ApJ/878/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As a result of competing physical mechanisms, the atmospheric composition of white dwarfs changes throughout their evolution, a process known as spectral evolution. Because of the ambiguity of their atmospheric compositions and the difficulties inherent to the modeling of their dense atmospheres, no consensus exists regarding the spectral evolution of cool white dwarfs (Teff<6000K). In the previous papers of this series, we presented and observationally validated a new generation of cool white dwarf atmosphere models that include all the necessary constitutive physics to accurately model those objects. Using these new models and a homogeneous sample of 501 cool white dwarfs, we revisit the spectral evolution of cool white dwarfs. Our sample includes all spectroscopically identified white dwarfs cooler than 8300K for which a parallax is available in Gaia DR2 and photometric observations are available in Pan-STARRS1 and 2MASS. Except for a few cool carbon-polluted objects, our models allow an excellent fit to the spectroscopic and photometric observations of all objects included in our sample. We identify a decrease of the ratio of hydrogen- to helium-rich objects between 7500 and 6250K, which we interpret as the signature of convective mixing. After this decrease, hydrogen-rich objects become more abundant up to 5000K. This puzzling increase, reminiscent of the non-DA gap, has yet to be explained. At lower temperatures, below 5000K, hydrogen-rich white dwarfs become rarer, which rules out the scenario in which the accretion of hydrogen from the interstellar medium dominates the spectral evolution of cool white dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/585/A102
- Title:
- Copper abundances in solar neighborhood stars
- Short Name:
- J/A+A/585/A102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [{alpha}/Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. The study also showed that non-LTE effects of neutral copper vary with stellar parameters and thus affect the [Cu/Fe] trend. We aim to derive the copper abundances for the stars from the sample of Nissen & Schuster (2010A&A...511L..10N) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-{alpha} population can still be distinguished from the low-{alpha} population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-{alpha} stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.
- ID:
- ivo://CDS.VizieR/J/ApJ/759/107
- Title:
- Core-collapse SNe and host galaxies
- Short Name:
- J/ApJ/759/107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae (SN). The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates (SFRs) of the host galaxies provide circumstantial evidence on the origin of each SN type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific SFRs. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our SN sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the SN discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.
- ID:
- ivo://CDS.VizieR/J/A+A/648/A66
- Title:
- CORE high-mass star-forming regions
- Short Name:
- J/A+A/648/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Characterizing the physical and chemical properties of forming massive stars at the spatial resolution of individual high-mass cores lies at the heart of current star formation research. We use sub-arcsecond resolution (~0.4arcsec) observations with the NOrthern Extended Millimeter Array at 1.37mm to study the dust emission and molecular gas of 18 high-mass star-forming regions. With distances in the range of 0.7-5.5kpc this corresponds to spatial scales down to 300-2300au that are resolved by our observations. We combine the derived physical and chemical properties of individual cores in these regions to estimate their ages. The temperature structure of these regions are determined by fitting H_2_CO and CH_3_CN line emission. The density profiles are inferred from the 1.37mm continuum visibilities. The column densities of 11 different species are determined by fitting the emission lines with XCLASS. Within the 18 observed regions, we identify 22 individual cores with associated 1.37mm continuum emission and with a radially decreasing temperature profile. We find an average temperature power-law index of q=0.4+/-0.1 and an average density power-law index of p=2.0+/-0.2 on scales on the order of several 1000au. Comparing these results with values of p derived in the literature suggest that the density profiles remain unchanged from clump to core scales. The column densities relative to N(C18O) between pairs of dense gas tracers show tight correlations. We apply the physical-chemical model MUlti Stage ChemicaL codE (MUSCLE) to the derived column densities of each core and find a mean chemical age of ~60000yrs and an age spread of 20000-100000yrs. With this paper we release all data products of the CORE project available at https://www.mpia.de/core. The CORE sample reveals well constrained density and temperature power-law distributions. Furthermore, we characterize a large variety in molecular richness that can be explained by an age spread confirmed by our physical-chemical modeling. The hot molecular cores show the most emission lines, but we also find evolved cores at an evolutionary stage, in which most molecules are destroyed and thus the spectra appear line-poor again.
- ID:
- ivo://CDS.VizieR/J/ApJ/887/203
- Title:
- Core rotation period measurements of KIC stars
- Short Name:
- J/ApJ/887/203
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stars between two and three solar masses rotate rapidly on the main sequence, and the detection of slow core and surface rotation in the core-helium burning phase for these stars places strong constraints on their angular momentum transport and loss. From a detailed asteroseismic study of the mixed-dipole mode pattern in a carefully selected, representative sample of stars, we find that slow core rotation rates in the range reported by prior studies are a general phenomenon and not a selection effect. We show that the core rotation rates of these stars decline strongly with decreasing surface gravity during the core He-burning phase. We argue that this is a model-independent indication of significant rapid angular momentum transport between the cores and envelopes of these stars. We see a significant range in core rotation rates at all surface gravities, with little evidence for a convergence toward a uniform value. We demonstrate using evolutionary models that measured surface rotation periods are a biased tracer of the true surface rotation distribution, and we argue for using stellar models for interpreting the contrast between core and surface rotation rates. The core rotation rates we measure do not have a strong mass or metallicity dependence. We argue that the emerging data strongly favor a model where angular momentum transport is much more efficient during the core He-burning phase than in the shell-burning phases that precede and follow it.