- ID:
- ivo://CDS.VizieR/J/AJ/160/209
- Title:
- K2 & TESS Synergy. I. Parameters & LC, 4 stars
- Short Name:
- J/AJ/160/209
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Although the Transiting Exoplanet Survey Satellite (TESS) primary mission observed the northern and southern ecliptic hemispheres, generally avoiding the ecliptic, and the Kepler space telescope during the K2 mission could only observe near the ecliptic, many of the K2 fields extend far enough from the ecliptic plane that sections overlap with TESS fields. Using photometric observations from both K2 and TESS, combined with archival spectroscopic observations, we globally modeled four known planetary systems discovered by K2 that were observed in the first year of the primary TESS mission. Specifically, we provide updated ephemerides and system parameters for K2-114b, K2-167b, K2-237b, and K2-261b. These were some of the first K2 planets to be observed by TESS in the first year and include three Jovian sized planets and a sub-Neptune with orbital periods less than 12 days. In each case, the updated ephemeris significantly reduces the uncertainty in prediction of future times of transit, which is valuable for planning observations with the James Webb Space Telescope and other future facilities. The TESS extended mission is expected to observe about half of the K2 fields, providing the opportunity to perform this type of analysis on a larger number of systems.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/617/1091
- Title:
- La and Eu abundances in 85 stars
- Short Name:
- J/ApJ/617/1091
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From newly obtained high-resolution, high signal-to-noise ratio spectra the abundances of the elements La and Eu have been determined over the stellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarf stars. Lanthanum is predominantly made by the s-process in the solar system, while Eu owes most of its solar system abundance to the r-process. The changing ratio of these elements in stars over a wide metallicity range traces the changing contributions of these two processes to the Galactic abundance mix.
- ID:
- ivo://CDS.VizieR/J/AJ/154/31
- Title:
- {lambda} Bootis stars: the southern survey I.
- Short Name:
- J/AJ/154/31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The {lambda} Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that {lambda} Boo stars have higher frequencies of "bright" debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR8799, a {lambda} Boo star with a resolved debris disk, suggests that the {lambda} Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 {lambda} Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of {lambda} Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 {lambda} Boo stars and have confirmed 12 others. As a step toward determining the proportion of {lambda} Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22{mu}m. On this basis, we cannot conclude that {lambda} Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many {lambda} Boo debris disks are cool and do not radiate strongly at 22{mu}m.
- ID:
- ivo://CDS.VizieR/J/MNRAS/448/822
- Title:
- LAMOST candidate members of star clusters
- Short Name:
- J/MNRAS/448/822
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We introduce the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) stellar parameter pipeline at Peking University - LSP3, developed and implemented for the determinations of radial velocity Vr and stellar atmospheric parameters (effective temperature Teff, surface gravity logg, metallicity [Fe/H]) for the LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC). We describe the algorithms of LSP3 and examine the accuracy of parameters yielded by it. The precision and accuracy of parameters yielded are investigated by comparing results of multi-epoch observations and of candidate members of open and globular clusters, with photometric calibration, as well as with independent determinations available from a number of external data bases, including the PASTEL archive, the APOGEE, SDSS and RAVE surveys, as well as those released in the LAMOST DR1. The uncertainties of LSP3 parameters are characterized and quantified as a function of the spectral signal-to-noise ratio (SNR) and stellar atmospheric parameters. We conclude that the current implementation of LSP3 has achieved an accuracy of 5.0km/s, 150K, 0.25dex, 0.15dex for the radial velocity, effective temperature, surface gravity and metallicity, respectively, for LSS-GAC spectra of FGK stars of SNRs per pixel higher than 10. The LSP3 has been applied to over a million LSS-GAC spectra collected hitherto. Stellar parameters yielded by the LSP3 will be released to the general public following the data policy of LAMOST, together with estimates of the interstellar extinction E(B-V) and stellar distances, deduced by combining spectroscopic and multiband photometric measurements using a variety of techniques.
- ID:
- ivo://CDS.VizieR/J/ApJS/238/16
- Title:
- LAMOST-DR3 very metal-poor star catalog
- Short Name:
- J/ApJS/238/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the result of a search for very metal-poor (VMP, [Fe/H]{<}-2.0) stars in the Milky Way based on low-resolution spectra from Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) DR3, significantly enlarging the current candidate sample of these low-metallicity objects. The selection procedure results in a sample of 10008 VMP stars covering a large area of sky in the Northern Hemisphere, and includes over 6800 targets brighter than V~16. This LAMOST DR3 VMP sample provides the largest number of VMP candidates to date that are sufficiently bright for follow-up high-resolution observation with 4-10m telescopes, greatly expanding the VMP stars discovered in the northern sky, and can be used to balance the spatial distribution of VMP stars with high-resolution spectroscopic analyses. Comparison with stars having existing high-resolution analyses and Tycho Gaia Astrometric Solution parallaxes indicates that the derived stellar parameters and distance estimates are reliable. The sample reaches beyond 40kpc in the halo, and contains over 670 candidates of extremely metal-poor ([Fe/H]{<}-3.0) and ultra-metal-poor ([Fe/H]{<}-4.0) stars. The distribution of V{phi} indicates that the sample consists of two halo components, with the retrograde component likely to be associated with the outer-halo population. A new criterion is proposed to select carbon-enhanced metal-poor (CEMP) star candidates, using line indices G1 and EGP over the range 4000K<Teff<7000K, resulting in 636 CEMP candidates from the LAMOST DR3 VMP sample.
- ID:
- ivo://CDS.VizieR/J/ApJ/891/39
- Title:
- LAMOST DR3 very metal-poor stars of the Galactic halo
- Short Name:
- J/ApJ/891/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We search for dynamical substructures in the LAMOST DR3 very metal-poor (VMP) star catalog. After cross-matching with Gaia DR2, there are ~3300 VMP stars with available high-quality astrometric information that have halo-like kinematics. We apply a method based on the self-organizing map StarGO to find groups clustered in the 4D space of orbital energy and angular momentum. We identify 57 dynamically tagged groups (DTGs), which we label DTG-1 to DTG-57. Most of them belong to existing massive substructures in the nearby halo, such as the Gaia Sausage or Sequoia. The stream identified by Helmi+ (1999Natur.402...53H) is recovered, but the two disjointed portions of the substructure appear to have distinct dynamical properties. The very retrograde substructure Rg5 found previously by Myeong+ (2018MNRAS.478.5449M) is also retrieved. We report six new DTGs with highly retrograde orbits, two with very prograde orbits, and 12 with polar orbits. By mapping other data sets (APOGEE halo stars, and catalogs of r-process-enhanced and carbon-enhanced metal-poor [CEMP] stars) onto the trained neuron map, we can associate stars with detailed chemical abundances with the DTGs and look for associations with chemically peculiar stars. The highly eccentric Gaia Sausage groups contain representatives of both debris from the satellite itself (which is {alpha}-poor) and the Splashed Disk, sent up into eccentric halo orbits from the encounter (and which is {alpha}-rich). The new prograde substructures also appear to be associated with the Splashed Disk. The DTGs belonging to the Gaia Sausage host two relatively metal-rich r-II stars and six CEMP stars in different subclasses, consistent with the idea that the Gaia Sausage progenitor is a massive dwarf galaxy. Rg5 is dynamically associated with two highly r-process-enhanced stars with [Fe/H]~-3. This finding indicates that its progenitor might be an ultrafaint dwarf galaxy that has experienced r-process enrichment from neutron star mergers.
- ID:
- ivo://CDS.VizieR/J/ApJS/251/15
- Title:
- LAMOST-Kepler/K2 survey (LK-MRS) first year obs.
- Short Name:
- J/ApJS/251/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Phase II of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST)-Kepler/K2 survey (LK-MRS), initiated in 2018, aims at collecting medium-resolution spectra (R~7500; hereafter MRS) for more than 50000 stars with multiple visits (~60 epochs) over a period of 5yr (2018 September to 2023 June). We selected 20 footprints distributed across the Kepler field and six K2 campaigns, with each plate containing a number of stars ranging from ~2000 to ~3000. During the first year of observations, the LK-MRS has already visited 13 plates 223 times over 40 individual nights, and collected ~280000 and ~369000 high-quality spectra in the blue and red wavelength ranges, respectively. The atmospheric parameters and radial velocities for ~259000 spectra of 21053 targets were successfully calculated by the LAMOST stellar parameter pipeline. The internal uncertainties for the effective temperature, surface gravity, metallicity, and radial velocity are found to be 100K, 0.15dex, 0.09dex, and 1.00km/s, respectively, when derived from a medium-resolution LAMOST spectrum with a signal-to-noise ratio (S/N) in the g band of 10. All of the uncertainties decrease as S/N increases, but they stabilize for S/N>100. We found 14997, 20091, and 1514 stars in common with the targets from the LAMOST low-resolution survey (LRS), Gaia, and the Apache Point Observatory Galactic Evolution Experiment (APOGEE), respectively, corresponding to fractions of ~70%, ~95%, and ~7.2%. In general, the parameters derived from LK-MRS spectra are consistent with those obtained from the LRS and APOGEE spectra, but the scatter increases as the surface gravity decreases when comparing with the measurements from APOGEE. A large discrepancy is found with the Gaia values of the effective temperature. Comparisons of the radial velocities of LK-MRS to Gaia and LK-MRS to APOGEE nearly follow a Gaussian distribution with means of {mu}~1.10 and 0.73km/s, respectively. We expect that the results from the LK-MRS spectra will shed new light on binary stars, asteroseismology, stellar activity, and other research fields.
- ID:
- ivo://CDS.VizieR/J/other/RAA/17.41
- Title:
- LAMOST metal-poor galaxies sample
- Short Name:
- J/other/RAA/17.4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a sample of 48 metal-poor galaxies at z<0.14 selected from 92 510 galaxies in the LAMOST survey. These galaxies are identified by their detection of the auroral emission line [OIII]{lambda}4363 above the 3{sigma} level, which allows a direct measurement of electron temperature and oxygen abundance. The emission line fluxes are corrected for internal dust extinction using the Balmer decrement method. With electron temperature derived from [OIII]{lambda}{lambda}4959,5007/[OIII]{lambda}4363 and electron density from [SII]{lambda}6731/[SII]{lambda}6717, we obtain the oxygen abundances in our sample which range from 12+log(O/H)=7.63(0.09Z_{sun}_) to 8.46 (0.6Z_{sun}_). We find an extremely metal-poor galaxy with 12+log(O/H)=7.63+/-0.01. With multiband photometric data from FUV to NIR and H{alpha} measurements, we also determine the stellar masses and star formation rates, based on the spectral energy distribution fitting and H{alpha} luminosity, respectively. We find that our galaxies have low and intermediate stellar masses with 6.39<=log(M/M_{sun}_)<=9.27, and high star formation rates (SFRs) with -2.18<=log(SFR/M_{sun}_yr^-1^)<=1.95. We also find that the metallicities of our galaxies are consistent with the local T_e_-based mass-metallicity relation, while the scatter is about 0.28dex. Additionally, assuming the coefficient of {alpha}=0.66, we find most of our galaxies follow the local mass-metallicity-SFR relation, but a scatter of about 0.24dex exists, suggesting the mass-metallicity relation is weakly dependent on SFR for those metal-poor galaxies.
- ID:
- ivo://CDS.VizieR/J/AJ/155/181
- Title:
- LAMOST/SP_Ace DR1 catalog
- Short Name:
- J/AJ/155/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters Teff, logg, [Fe/H], and [alpha/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ~120K in Teff, ~0.2 in logg, ~0.15dex in [Fe/H], and ~0.1dex in [alpha/Fe] for spectra with S/N>40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.
- ID:
- ivo://CDS.VizieR/J/AJ/152/45
- Title:
- LAMOST survey of star clusters in M31. II.
- Short Name:
- J/AJ/152/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We select from Paper I a sample of 306 massive star clusters observed with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) in the vicinity fields of M31 and M33, and determine their metallicities, ages, and masses. Metallicities and ages are estimated by fitting the observed integrated spectra with stellar synthesis population (SSP) models with a pixel-to-pixel spectral fitting technique. Ages for most young clusters are also derived by fitting the multi-band photometric measurements with model spectral energy distributions (SEDs). The estimated cluster ages span a wide range, from several million years to the age of the universe. The numbers of clusters younger and older than 1Gyr are, respectively, 46 and 260. With ages and metallicities determined, cluster masses are then estimated by comparing the multi-band photometric measurements with SSP model SEDs. The derived masses range from ~10^3^ to ~10^7^M_{Sun}_, peaking at ~10^4.3^ and ~10^5.7^M_{Sun}_ for young (<1Gyr) and old (>1Gyr) clusters, respectively. Our estimated metallicities, ages, and masses are in good agreement with available literature values. Old clusters richer than [Fe/H]~-0.7dex have a wide range of ages. Those poorer than [Fe/H]~-0.7dex seem to be composed of two groups, as previously found for Galactic globular clusters-one of the oldest ages with all values of metallicity down to ~-2dex and another with metallicity increasing with decreasing age. The old clusters in the inner disk of M31 (0-30kpc) show a clear metallicity gradient measured at -0.038+/-0.023dex/kpc.