Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/492/277
- Title:
- Analysis of Collinder 69 stars with VOSA
- Short Name:
- J/A+A/492/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The physical properties of almost any kind of astronomical object can be derived by fitting synthetic spectra or photometry extracted from theoretical models to observational data. We want to develop an automatic procedure to perform this kind of fitting to a relatively large sample of members of a stellar association and apply this methodology to the case of Collinder 69. We combine the multiwavelength data of our sources and follow a work-flow to derive the physical parameters of the sources. The key step of the work-flow is performed by a new VO-tool, VOSA. All the steps in this process are done in a VO environment.
- ID:
- ivo://CDS.VizieR/J/AJ/146/156
- Title:
- APOGEE M-dwarf survey. I. First year velocities
- Short Name:
- J/AJ/146/156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsini precision of ~2km/s and a measurement floor at vsini=4km/s. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ~100-200m/s), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50m/s for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.
- ID:
- ivo://CDS.VizieR/J/AJ/159/182
- Title:
- APOGEE Net, YSOs parameters through deep learning
- Short Name:
- J/AJ/159/182
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Machine learning allows for efficient extraction of physical properties from stellar spectra that have been obtained by large surveys. The viability of machine-learning approaches has been demonstrated for spectra covering a variety of wavelengths and spectral resolutions, but most often for main-sequence (MS) or evolved stars, where reliable synthetic spectra provide labels and data for training. Spectral models of young stellar objects (YSOs) and low-mass MS stars are less well-matched to their empirical counterparts, however, posing barriers to previous approaches to classify spectra of such stars. In this work, we generate labels for YSOs and low-mass MS stars through their photometry. We then use these labels to train a deep convolutional neural network to predict logg, Teff, and Fe/H for stars with Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra in the DR14 data set. This "APOGEE Net" has produced reliable predictions of logg for YSOs, with uncertainties of within 0.1dex and a good agreement with the structure indicated by pre-MS evolutionary tracks, and it correlates well with independently derived stellar radii. These values will be useful for studying pre-MS stellar populations to accurately diagnose membership and ages.
- ID:
- ivo://CDS.VizieR/J/AJ/161/203
- Title:
- A sample of 7146 M or K-dwarfs from KIC and Gaia
- Short Name:
- J/AJ/161/203
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The planet-metallicity correlation serves as a potential link between exoplanet systems as we observe them today and the effects of bulk composition on the planet formation process. Many observers have noted a tendency for Jovian planets to form around stars with higher metallicities; however, there is no consensus on a trend for smaller planets. Here, we investigate the planet-metallicity correlation for rocky planets in single and multi-planet systems around Kepler M-dwarf and late-K-dwarf stars. Due to molecular blanketing and the dim nature of these low-mass stars, it is difficult to make direct elemental abundance measurements via spectroscopy. We instead use a combination of accurate and uniformly measured parallaxes and photometry to obtain relative metallicities and validate this method with a subsample of spectroscopically determined metallicities. We use the Kolmogorov-Smirnov (K-S) test, Mann-Whitney U-test, and Anderson-Darling (AD) test to compare the compact multiple planetary systems with single-transiting planet systems and systems with no detected transiting planets. We find that the compact multiple planetary systems are derived from a statistically more metal-poor population, with a p-value of 0.015 in the K-S test, a p-value of 0.005 in the Mann-Whitney U-test, and a value of 2.574 in the AD test statistic, which exceeds the derived threshold for significance by a factor of 25. We conclude that metallicity plays a significant role in determining the architecture of rocky planet systems. Compact multiples either form more readily, or are more likely to survive on gigayear timescales, around metal-poor stars.
- ID:
- ivo://CDS.VizieR/J/AJ/154/147
- Title:
- Astrometry&photometry for late-type dwarfs&subdwarfs
- Short Name:
- J/AJ/154/147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here are new or updated VI photometry on the Johnson-Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHK_s_ near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Because large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.
- ID:
- ivo://CDS.VizieR/J/AJ/155/252
- Title:
- Astrometry & photometry of dwarf carbon stars
- Short Name:
- J/AJ/155/252
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Parallaxes are presented for a sample of 20 nearby dwarf carbon stars. The inferred luminosities cover almost two orders of magnitude. Their absolute magnitudes and tangential velocities confirm prior expectations that some originate in the Galactic disk, although more than half of this sample are halo stars. Three stars are found to be astrometric binaries, and orbital elements are determined; their semimajor axes are 1-3 au, consistent with the size of an AGB mass-transfer donor star.
- ID:
- ivo://CDS.VizieR/J/MNRAS/479/1332
- Title:
- Binaries with F, G or K primaries and M dwarfs
- Short Name:
- J/MNRAS/479/1332
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions. With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high-resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic STEPAR code for deriving precise stellar atmospheric parameters: Teff, logg, {xi}, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.
- ID:
- ivo://CDS.VizieR/J/PAZh/44/124
- Title:
- Binary systems among nearby dwarfs searching
- Short Name:
- J/PAZh/44/124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions (Vmag>13^m^, {mu}>300mas/yr) for which the 'duplicate source' flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m 'Saturn' telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the `Saturn' telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation {rho}, position angle, and component magnitude difference {Delta}m have been estimated for almost all of the revealed binary systems. For most stars 1.5''<{rho}<2.5'', while {Delta}m<1.5^m^.
- ID:
- ivo://CDS.VizieR/J/A+A/566/A111
- Title:
- Brown dwarf atmosphere monitoring (BAM)
- Short Name:
- J/A+A/566/A111
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the SofI instrument on the 3.5m New Technology Telescope, we have conducted an extensive near-infrared monitoring survey of an unbiased sample of 69 brown dwarfs spanning the L0 to T8 spectral range, with at least one example of each spectral type. Each target was observed for a 2-4 hour period in the Js-band, and the median photometric precision of the data is ~0.7%. A total of 14 brown dwarfs were identified as variables with min-to-max amplitudes ranging from 1.7% to 10.8% over the observed duration. All variables satisfy a statistical significance threshold with a p-value <=5% based on comparison with a median reference star light curve. Approximately half of the variables show pure sinusoidal amplitude variations similar to 2MASSJ2139+0220, and the remainder show multi-component variability in their light curves similar to SIMPJ0136+0933.