- ID:
- ivo://CDS.VizieR/J/MNRAS/479/5491
- Title:
- Absolute parameters of 509 main-sequence stars
- Short Name:
- J/MNRAS/479/5491
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Absolute parameters of 509 main-sequence stars selected from the components of detached eclipsing spectroscopic binaries in the solar neighbourhood are used to study mass-luminosity, mass-radius, and mass-effective temperature relations (MLR, MRR, and MTR). The MLR function is found better if expressed by a six-piece classical MLR (L{prop.to}M^{alpha}^) rather than a fifth or a sixth degree polynomial within the mass range of 0.179<=M/M_{sun}_<=31. The break points separating the mass ranges with classical MLR do not appear to us to be arbitrary. Instead, the data indicate abrupt changes along the mass axis in the mean energy generation per unit of stellar mass. Unlike the MLR function, the MRR and MTR functions cannot be determined over the full range of masses. A single-piece MRR function is calibrated from the radii of stars with M<=1.5M_{sun}_, while a second single-piece MTR function is found for stars with M>1.5M_{sun}_. The missing part of the MRR is computed from the MLR and MTR, while the missing part of the MTR is computed from the MLR and MRR. As a result, we have interrelated the MLR, MRR, and MTR, which are useful in determining the typical absolute physical parameters of main-sequence stars of given masses. These functions are also useful to estimate typical absolute physical parameters from typical T_eff_ values. Thus, we were able to estimate the typical absolute physical parameters of main-sequence stars observed in the Sejong Open cluster Survey, based on that survey's published values for Teff. Since typical absolute physical parameters of main-sequence stars cannot normally be determined in such photometric surveys, the interrelated functions are shown to be useful to compute such missing parameters from similar surveys.
« Previous |
1 - 10 of 584
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/445/1584
- Title:
- AB-type RR Lyrae stars from ASAS and WASP
- Short Name:
- J/MNRAS/445/1584
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this article, we present results based on high-density, high-precision Wide-Angle Search for Planets (WASP) light curves supplemented with lower-precision photometry from the All-Sky Automated Survey (ASAS) for 268 RR Lyrae stars (176 regular, 92 Blazhko). Light curves were Fourier-decomposed and coefficients from WASP were transformed to the ASAS standard using 24 common stars. Coefficients were then compared with similar data from Galactic globular clusters, the Galactic bulge and the Large and Small Magellanic Clouds (LMC and SMC). Using Fourier coefficients, we also calculated physical parameters via standard equations from the literature. We confirmed the results of previous authors, including lower amplitudes and longer rise times for Blazhko stars. It was found that in the R_31_ versus R_21_ plot the location of a star depends mainly on its metallicity and that Blazhko stars prefer a different location from modulation-free stars. Field and globular cluster RR Lyrae variables have a different {phi}21 and {phi}31 from stars in the LMC, SMC and Galactic bulge. Although there are some weak indications that Blazhko stars could tend towards a slightly lower metallicity and shorter periods, no convincing proof was found. The most interesting highlight is the identification of a very recently proposed new group of metal-rich RR Lyrae type stars. These low-luminosity, metal-strong variables, comprising both Blazhko and regular stars, have shorter periods and about 180K higher temperature at constant (B-V)_0_ than the rest of the stars in the sample.
- ID:
- ivo://CDS.VizieR/J/AJ/144/95
- Title:
- Abundance in stars of the outer galactic disk. IV.
- Short Name:
- J/AJ/144/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [{alpha}/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance (<0.02dex/kpc), but for some elements, there is a hint that the local (R_GC_<13kpc) and distant (R_GC_>13kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age (<0.04dex/Gyr). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [{alpha}/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/4
- Title:
- Abundances and ages of stars in the Milky Way bulge
- Short Name:
- J/ApJ/900/4
- Date:
- 14 Mar 2022 07:37:10
- Publisher:
- CDS
- Description:
- The age and chemical characteristics of the Galactic bulge link to the formation and evolutionary history of the Galaxy. Data-driven methods and large surveys enable stellar ages and precision chemical abundances to be determined for vast regions of the Milky Way, including the bulge. Here, we use the data-driven approach of The Cannon, to infer the ages and abundances for 125367 stars in the Milky Way, using spectra from Apache Point Observatory Galaxy Evolution Experiment (apogee) DR14. We examine the ages and metallicities of 1654 bulge stars within R_GAL_<3.5kpc. We focus on fields with b<12{deg}, and out to longitudes of l<15{deg}. We see that stars in the bulge are about twice as old ({tau}=8Gyr), on average, compared to those in the solar neighborhood ({tau}=4Gyr), with a larger dispersion in [Fe/H] (~0.38 compared to 0.23dex). This age gradient comes primarily from the low-{alpha} stars. Looking along the Galactic plane, the very central field in the bulge shows by far the largest dispersion in [Fe/H] ({sigma}[Fe/H]~0.4dex) and line-of- sight velocity ({sigma}vr~90km/s), and simultaneously the smallest dispersion in age. Moving out in longitude, the stars become kinematically colder and less dispersed in [Fe/H], but show a much broader range of ages. We see a signature of the X-shape within the bulge at a latitude of b=8{deg}, but not at b=12{deg}. Future apogee and other survey data, with larger sampling, affords the opportunity to extend our approach and study in more detail, to place stronger constraints on models of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/754/L38
- Title:
- Abundances and radial velocities of M13 giants
- Short Name:
- J/ApJ/754/L38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present O, Na, and Fe abundances, as well as radial velocities, for 113 red giant branch (RGB) and asymptotic giant branch (AGB) stars in the globular cluster M13. The abundances and velocities are based on spectra obtained with the WIYN-Hydra spectrograph, and the observations range in luminosity from the horizontal branch (HB) to RGB tip. The results are examined in the context of recent globular cluster formation scenarios. We find that M13 exhibits many key characteristics that suggest its formation and chemical enrichment are well described by current models. Some of these observations include the central concentration of O-poor stars, the notable decrease in [O/Fe] (but small increase in [Na/Fe]) with increasing luminosity that affects primarily the "extreme" population, the small fraction of stars with halo-like composition, and the paucity of O-poor AGB stars. In agreement with recent work, we conclude that the most O-poor M13 giants are likely He-enriched and that most (all?) O-poor RGB stars evolve to become extreme HB and AGB-manqu\'e stars. In contrast, the "primordial" and "intermediate" population stars appear to experience standard HB and AGB evolution.
- ID:
- ivo://CDS.VizieR/J/AJ/150/187
- Title:
- Abundances and stellar parameters of LAMOST stars
- Short Name:
- J/AJ/150/187
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe an application of the SEGUE Stellar Parameter Pipeline (SSPP) to medium-resolution stellar spectra obtained by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), in order to determine estimates of the stellar atmospheric parameters (T_eff_, logg, and [Fe/H]) and the abundance ratios ([{alpha}/Fe] and [C/Fe]). By performing a coordinate match with the LAMOST stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the RAdial Velocity Experiment (RAVE), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE). We ran the selected LAMOST stellar spectra from each survey through SSPP, and compared the stellar parameters down to signal-to-noise ratio (S/N) of 10 and chemical abundances down to S/N=20 derived by SSPP with those determined by the APOGEE, RAVE, and SEGUE software pipelines. Our results show that the derived stellar parameters generally agree quite well, even though there exist some small systematic offsets with small scatter in T_eff_, logg, and [Fe/H], due to the use of different temperature scales, abundance scales, and calibrations adopted by each survey. Comparison of the [{alpha}/Fe] determinations for LAMOST spectra suggests no sign of significant systematic offsets (< -0.04dex), with a small scatter (<0.08dex) relative to stars in common with APOGEE and SEGUE. The [C/Fe] estimates determined for the LAMOST spectra also exhibit good agreement, with a very small offset (~0.01dex) and scatter (~0.12dex) relative to the SEGUE stars, while there exists about a -0.19dex offset, with a small scatter of ~0.13dex, for the APOGEE sample. Due to the existence of small offsets in the stellar parameters and abundances among difference data sets, optimal results when combining the different data sets will be obtained by removing the offsets. Once accomplished, the stellar parameters and chemical abundances estimated by SSPP from the LAMOST stellar spectra should provide a reliable database for studies of the Galactic disk and halo systems.
- ID:
- ivo://CDS.VizieR/J/A+A/627/A173
- Title:
- Abundances for 4 metal-poor stars
- Short Name:
- J/A+A/627/A173
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Age estimates are very uncertain and are available for only a small number of metal-poor stars. Here we present the first results of a pilot program aimed at deriving precise masses, ages and chemical abundances for metal-poor halo giants using asteroseismology, and high-resolution spectroscopy. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improving spectroscopic temperatures, metallicities and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss, [alpha/Fe]-enhancement). Orbits were computed using Gaia DR2 data. {The stars are found to be "normal" metal-poor halo stars (i.e. non C-enhanced), with an abundance pattern typical of old stars (i.e. alpha and Eu-enhanced), and with masses in the 0.80-1.0M_{sun}_ range. The inferred model-dependent stellar ages are found to range from 7.4 to 13.0Gyr, with uncertainties of ~30%-35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from APOGEE survey and a set of M4 stars. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H]~-0.8 to -2dex), are very old >9Gyr (14 out of 19 stars), and all of them are older than >5Gyr (within the 68 percentile confidence level).
- ID:
- ivo://CDS.VizieR/J/AJ/152/21
- Title:
- Abundances for red giants in NGC 6342 and NGC 6366
- Short Name:
- J/AJ/152/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC6342 and NGC6366. The velocities and abundances are based on measurements of high-resolution (R>~20000) spectra obtained with the MMT-Hectochelle and WIYN-Hydra spectrographs. We find that NGC6342 has a heliocentric radial velocity of +112.5km/s ({sigma}=8.6km/s), NGC6366 has a heliocentric radial velocity of -122.3km/s ({sigma}=1.5km/s), and both clusters have nearly identical metallicities ([Fe/H]~-0.55). NGC6366 shows evidence of a moderately extended O-Na anti-correlation, but more data are needed for NGC6342 to determine if this cluster also exhibits the typical O-Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC6342 and NGC6366 display {alpha} and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H]>-1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/122
- Title:
- Abundances from SEGUE Stellar Parameters Pipeline
- Short Name:
- J/ApJ/798/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observations: there are >10^9^ photometrically cataloged sources, yet modern spectroscopic surveys are limited to ~fewx10^6^ targets. As we approach the Large Synoptic Survey Telescope era, new algorithmic solutions are required to cope with the data deluge. Here we report the development of a machine-learning framework capable of inferring fundamental stellar parameters (T_eff_, logg, and [Fe/H]) using photometric-brightness variations and color alone. A training set is constructed from a systematic spectroscopic survey of variables with Hectospec/Multi-Mirror Telescope. In sum, the training set includes ~9000 spectra, for which stellar parameters are measured using the SEGUE Stellar Parameters Pipeline (SSPP). We employed the random forest algorithm to perform a non-parametric regression that predicts T_eff_, logg, and [Fe/H] from photometric time-domain observations. Our final optimized model produces a cross-validated rms error (RMSE) of 165K, 0.39dex, and 0.33dex for T_eff_, logg, and [Fe/H], respectively. Examining the subset of sources for which the SSPP measurements are most reliable, the RMSE reduces to 125K, 0.37dex, and 0.27dex, respectively, comparable to what is achievable via low-resolution spectroscopy. For variable stars this represents a {approx}12%-20% improvement in RMSE relative to models trained with single-epoch photometric colors. As an application of our method, we estimate stellar parameters for ~54000 known variables. We argue that this method may convert photometric time-domain surveys into pseudo-spectrographic engines, enabling the construction of extremely detailed maps of the Milky Way, its structure, and history.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/146
- Title:
- Abundances in 2 metal-poor GCs, M53 & NGC5053
- Short Name:
- J/ApJ/900/146
- Date:
- 02 Feb 2022 13:00:59
- Publisher:
- CDS
- Description:
- We search for extratidal stars around two metal-poor Galactic globular clusters, M53 and NGC 5053, using the near-infrared APOGEE spectra. Applying the t-distributed stochastic neighbor embedding (t-SNE) algorithm on the chemical abundances and radial velocities results in identification of two isolated stellar groups composed of cluster member stars in the t-SNE projection plane. With additional selection criteria of radial velocity, location in the color-magnitude diagram, and abundances from a manual chemical analysis, we find a total of 73 cluster member candidates; seven extratidal stars are found beyond the tidal radii of the two clusters. The extratidal stars around the clusters tend to be located along the leading direction of the cluster proper motion, and the individual proper motion of these stars also seems to be compatible to those of clusters. Interestingly, we find that one extratidal star of NGC 5053 is located on the southern outskirts of M53, which is part of common stellar envelope by the tidal interaction between two clusters. We discuss the nature of this star in the context of the tidal interaction between two clusters. We find apparent Mg-Al anticorrelations with a clear gap and spread (~0.9dex) in Al abundances for both clusters, and a light Si abundance spread (~0.3dex) for NGC 5053. Since all extratidal stars have Mg-enhanced and Al-depleted features, they could be first-generation stars of two globular clusters. Our results support that M53 and NGC5053 originated in dwarf galaxies and are surrounded by extended stellar substructures of more numerous populations of clusters.