Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/486/2477
- Title:
- Catalogue of members of NGC 6530
- Short Name:
- J/MNRAS/486/2477
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The combination of precise radial velocities from multi-object spectroscopy and highly accurate proper motions from Gaia DR2 opens up the possibility for detailed 3D kinematic studies of young star-forming regions and clusters. Here, we perform such an analysis by combining Gaia-ESO Survey spectroscopy with Gaia astrometry for ~900 members of the Lagoon Nebula cluster, NGC 6530. We measure the 3D velocity dispersion of the region to be 5.35^+0.39^_-0.34_km/s, which is large enough to suggest the region is gravitationally unbound. The velocity ellipsoid is anisotropic, implying that the region is not sufficiently dynamically evolved to achieve isotropy, though the central part of NGC 6530 does exhibit velocity isotropy that suggests sufficient mixing has occurred in this denser part. We find strong evidence that the stellar population is expanding, though this is preferentially occurring in the declination direction and there is very little evidence for expansion in the right ascension direction. This argues against a simple radial expansion pattern, as predicted by models of residual gas expulsion. We discuss these findings in the context of cluster formation, evolution, and disruption theories.
- ID:
- ivo://CDS.VizieR/J/ApJS/219/19
- Title:
- Census of nearby white dwarfs from SUPERBLINK
- Short Name:
- J/ApJS/219/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed description of the physical properties of our current census of white dwarfs within 40pc of the Sun, based on an exhaustive spectroscopic survey of northern hemisphere candidates from the SUPERBLINK proper motion database. Our method for selecting white dwarf candidates is based on a combination of theoretical color-magnitude relations and reduced proper motion diagrams. We reported in an earlier publication the discovery of nearly 200 new white dwarfs, and we present here the discovery of an additional 133 new white dwarfs, among which we identify 96 DA, 3 DB, 24 DC, 3 DQ, and 7 DZ stars. We further identify 178 white dwarfs that lie within 40pc of the Sun, representing a 40% increase of the current census, which now includes 492 objects. We estimate the completeness of our survey at between 66% and 78%, allowing for uncertainties in the distance estimates. We also perform a homogeneous model atmosphere analysis of this 40pc sample and find a large fraction of massive white dwarfs, indicating that we are successfully recovering the more massive, and less luminous objects often missed in other surveys. We also show that the 40pc sample is dominated by cool and old white dwarfs, which populate the faint end of the luminosity function, although trigonometric parallaxes will be needed to shape this part of the luminosity function more accurately. Finally, we identify 4 probable members of the 20pc sample, 4 suspected double degenerate binaries, and we also report the discovery of two new ZZ Ceti pulsators.
- ID:
- ivo://CDS.VizieR/J/AJ/156/171
- Title:
- Cepheid abund.: multiphase results & spatial gradients
- Short Name:
- J/AJ/156/171
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Parameters and abundances have been derived for 435 Cepheids based on an analysis of 1127 spectra. Results from five or more phases are available for 52 of the program stars. The latter set of stars span periods between 1.5 and 68 days. The parameters and abundances show excellent consistency across phase. For iron, the average range in the determined abundance is 0.11 from these 52 stars. For 163 stars with more than one phase available the average range is 0.07. The variation in effective temperature tracks well with phase, as does the total broadening velocity. The gravity and microturbulent velocity follow phase, but with less variation and regularity. Abundance gradients have been derived using Gaia DR2 (Cat. I/345) parallax data, as well as Bayesian distance estimates based upon Gaia DR2 from Bailer-Jones et al. (2018, Cat. I/347). The abundance gradient derived for iron is d[Fe/H]/dR=-0.05 dex/kpc, similar to gradients derived in previous studies.
- ID:
- ivo://CDS.VizieR/III/193
- Title:
- Chemical Abundances in Late-Type Stars
- Short Name:
- III/193
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalogue includes chemical abundances determinations (from Li to Eu) and atmospheric parameters (Teff, logg, microturbulent velocity) obtained from re-analyses of 1108 Late-Type Stars. It contains field stars of the Galaxy, of open and globular cluster stars, and stars belonging to the LMC and the SMC. Almost all of these stars are referenced in the Cayrel de Strobel et al.'s [Fe/H] catalog (see cat. <III/200>). Most of the abundance results are very reliable within 0.2dex when using different sources of equivalent widths taken from the literature for a given star.
- ID:
- ivo://CDS.VizieR/J/AJ/161/183
- Title:
- Chemical abundances in 52 M-giant stars
- Short Name:
- J/AJ/161/183
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We measured ^35^Cl abundances in 52-M giants with metallicities in the range -0.5<[Fe/H]<0.12. Abundances and atmospheric parameters were derived using infrared spectra from CSHELL on the NASA Infrared Telescope Facility and from optical echelle spectra. We measured Cl abundances by fitting a H^35^Cl molecular feature at 3.6985{mu}m with synthetic spectra. We also measured the abundances of O, Ca, Ti, and Fe using atomic absorption lines. We find that the [Cl/Fe] ratio for our stars agrees with chemical evolution models of Cl, and the [Cl/Ca] ratio is broadly consistent with the solar ratio over our metallicity range. Both indicate that Cl is primarily made in core-collapse supernovae with some contributions from Type Ia supernovae. We suggest that other potential nucleosynthesis processes, such as the {nu}-process, are not significant producers of Cl. Finally, we also find our Cl abundances are consistent with HII and planetary nebular abundances at a given oxygen abundance, although there is scatter in the data.
- ID:
- ivo://CDS.VizieR/J/AJ/160/181
- Title:
- Chemical abundances in red giants with Magellan
- Short Name:
- J/AJ/160/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-resolution Magellan/MIKE spectroscopy of 42 red giant stars in seven stellar streams confirmed by the Southern Stellar Stream Spectroscopic Survey (S5): ATLAS, Aliqa Uma, Chenab, Elqui, Indus, Jhelum, and Phoenix. Abundances of 30 elements have been derived from over 10000 individual line measurements or upper limits using photometric stellar parameters and a standard LTE analysis. This is currently the most extensive set of element abundances for stars in stellar streams. Three streams (ATLAS, Aliqa Uma, and Phoenix) are disrupted metal-poor globular clusters, although only weak evidence is seen for the light-element anticorrelations commonly observed in globular clusters. Four streams (Chenab, Elqui, Indus, and Jhelum) are disrupted dwarf galaxies, and their stars display abundance signatures that suggest progenitors with stellar masses ranging from 106 to 107M{sun}. Extensive description is provided for the analysis methods, including the derivation of a new method for including the effect of stellar parameter correlations on each star's abundance and uncertainty. This paper includes data gathered with the 6.5m Magellan Telescopes located at Las Campanas Observatory, Chile.
- ID:
- ivo://CDS.VizieR/J/A+A/642/A176
- Title:
- Chemical evolution of dSph galaxy Sextans
- Short Name:
- J/A+A/642/A176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our analysis of the FLAMES dataset targeting the central 25' region of the Sextans dwarf spheroidal galaxy (dSph). This dataset is the third major part of the high-resolution spectroscopic section of the ESO large program 171.B-0588(A) obtained by the Dwarf galaxy Abundances and Radial-velocities Team (DART). Our sample is composed of red giant branch stars down to V~20.5mag, the level of the horizontal branch in Sextans, and allows users to address questions related to both stellar nucleosynthesis and galaxy evolution. We provide metallicities for 81 stars, which cover the wide [Fe/H]=-3.2 to -1.5dex range. The abundances of ten other elements are derived: Mg, Ca, Ti, Sc, Cr, Mn, Co, Ni, Ba, and Eu. Despite its small mass, Sextans is a chemically evolved system, showing evidence of a contribution from core-collapse and Type Ia supernovae as well as low-metallicity asymptotic giant branch stars (AGBs). This new FLAMES sample offers a sufficiently large number of stars with chemical abundances derived with high accuracy to firmly establish the existence of a plateau in [alpha/Fe] at ~0.4dex followed by a decrease above [Fe/H]~-2dex. These features reveal a close similarity with the Fornax and Sculptor dSphs despite their very different masses and star formation histories, suggesting that these three galaxies had very similar star formation efficiencies in their early formation phases, probably driven by the early accretion of smaller galactic fragments, until the UV-background heating impacted them in different ways. The parallel between the Sculptor and Sextans dSph is also striking when considering Ba and Eu. The same chemical trends can be seen in the metallicity region common to both galaxies, implying similar fractions of SNeIa and low-metallicity AGBs. Finally, as to the iron-peak elements, the decline of [Co/Fe] and [Ni/Fe] above [Fe/H]~-2 implies that the production yields of Ni and Co in SNeIa are lower than that of Fe. The decrease in [Ni/Fe] favours models of SNeIa based on the explosion of double-degenerate sub-Chandrasekhar mass white dwarfs.
- ID:
- ivo://CDS.VizieR/J/ApJ/719/931
- Title:
- Chemical evolution of the UMi dSph
- Short Name:
- J/ApJ/719/931
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an abundance analysis based on high-resolution spectra of 10 stars selected to span the full range in metallicity in the Ursa Minor (UMi) dwarf spheroidal (dSph) galaxy. We find that [Fe/H] for the sample stars ranges from -1.35 to -3.10 dex. Combining our sample with previously published work for a total of 16 luminous UMi giants, we establish the trends of abundance ratios [X/Fe] as functions of [Fe/H] for 15 elements. In key cases, particularly for the {alpha}-elements, these trends resemble those for stars in the outer part of the Galactic halo, especially at the lowest metallicities probed. The neutron-capture elements show an r-process distribution over the full range of Fe metallicity reached in this dSph galaxy. This suggests that the duration of star formation in the UMi dSph was shorter than in other dSph galaxies. The derived ages for a larger sample of UMi stars with more uncertain metallicities also suggest a population dominated by uniformly old (~13Gyr) stars, with a hint of an age-metallicity relationship. We note the presence of two UMi giants with [Fe/H]<-3.0 dex in our sample and reaffirm that the inner Galactic halo could have been formed by early accretion of Galactic satellite galaxies and dissolution of young globular clusters, while the outer halo could have formed from those satellite galaxies that accreted somewhat later.
- ID:
- ivo://CDS.VizieR/J/MNRAS/481/3244
- Title:
- Chemo-kinematics from MARVELS
- Short Name:
- J/MNRAS/481/3244
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Combining stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity, with barycentric radial velocity data provides insight into the chemo-dynamics of the Milky Way and our local Galactic environment. We analyse 3075 stars with spectroscopic data from the Sloan Digital Sky Survey III MARVELS radial velocity survey and present atmospheric parameters for 2343 dwarf stars using the spectral indices method, a modified version of the equivalent width method. We present barycentric radial velocities for a sample of 2610 stars with a median uncertainty of 0.3km/s. We determine stellar ages using two independent methods and calculate ages for 2335 stars with a maximum-likelihood isochronal age-dating method and for 2194 stars with a Bayesian age-dating method. Using previously published parallax data, we compute Galactic orbits and space velocities for 2504 stars to explore stellar populations based on kinematic and age parameters. This study combines good ages and exquisite velocities to explore local chemo-kinematics of the Milky Way, which complements many of the recent studies of giant stars with the APOGEE survey, and we find our results to be in agreement with current chemo-dynamical models of the Milky Way. Particularly, we find from our metallicity distributions and velocity-age relations of a kinematically defined thin disc that the metal-rich end has stars of all ages, even after we clean the sample of highly eccentric stars, suggesting that radial migration plays a key role in the metallicity scatter of the thin disc. All stellar parameters and kinematic data derived in this work are catalogued and published online in machine-readable form.