- ID:
- ivo://CDS.VizieR/J/A+A/501/297
- Title:
- Effective temperatures of B Supergiants
- Short Name:
- J/A+A/501/297
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Effective temperatures of early-type supergiants are important to test stellar atmosphere- and internal structure-models of massive and intermediate mass objects at different evolutionary phases. However, these Teff values are more or less discrepant depending on the method used to determine them. We aim to obtain a new calibration of the Teff parameter for early-type supergiants as a function of observational quantities that are: a) highly sensitive to the ionization balance in the photosphere and its gas pressure; b) independent of the interstellar extinction; c) as much as possible model-independent.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/369/178
- Title:
- Effective temperatures of carbon-rich stars
- Short Name:
- J/A+A/369/178
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Table 10 is the full version of Table A1 given in Appendix. There are 441 entries corresponding to 441 spectral energy distributions (SEDs) of 406 carbon stars and related objects studied in Papers I (<J/A+A/321/236>, II (<J/A+A/342/773> and III (<J/A+A/344/263>) (photometric group G in column 3 and extinction A(J) at J-filter in column 4). Two estimates of the effective temperature (Sect. 12) from the SED (calibrated color indices) and bolometric flux (integrated flux: 0.36 to 100{mu}m) are given in columns 5 and 6 respectively, together with the adopted mean value in column 7. Also given in column 8, the apparent bolometric magnitude of the SED/Star, and in column 9 as "remarks", the variation phase information whenever available, the detection of circumstellar extinction and/or emission with associated mbol2 in a few case (see Sect. 13).
- ID:
- ivo://CDS.VizieR/J/A+A/429/235
- Title:
- Effective temperatures of 119 C-rich giants
- Short Name:
- J/A+A/429/235
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The mass loss rates, expansion velocities and dust-to-gas density ratios from millimetric observations of 119 carbon-rich giants are compared, as functions of stellar parameters, to the predictions of recent hydrodynamical models. Distances and luminosities previously estimated from HIPPARCOS data, masses from pulsations and C/O abundance ratios from spectroscopy, and effective temperatures from a new homogeneous scale, are used.
- ID:
- ivo://CDS.VizieR/J/MNRAS/371/879
- Title:
- Effective temperatures of 215 FGK giants
- Short Name:
- J/MNRAS/371/879
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present precise effective temperatures (Teff) of 215 FGK giants determined using the method of line-depth ratios. For each star, we have measured the line depths and equivalent widths of a large number of spectral lines of low and high excitation potentials and established ~100 relations between Teff and their ratios. Starting with an initial value Teff, the relations are then self-calibrated by an iterative process. Our final estimates have been compared with very accurate (1 per cent) published temperatures and show a good agreement. Using our calibrations, we derive precise temperatures for 215 giants with near-solar metallicity, from high-resolution (R=42000) and high signal-to-noise ratio (S/N=100250) echelle spectra, obtained with the ELODIE spectrometer at the Observatoire de Haute Provence (OHP).
- ID:
- ivo://CDS.VizieR/J/AN/321/277
- Title:
- Effective temperatures of K-M giants
- Short Name:
- J/AN/321/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A high-resolution spectroscopic survey in the 6380-6460{AA} region of 224 slowly-rotating M-K class III giants is presented. Spectral line-depth ratio are calibrated against effective temperature obtained from B-V and V-I color indices in the range 3200-7500K (M6-A9). A table of polynomial coefficients for 12 line-ratio-Teff relations can be used to derive Teff of F-M stars to within 33K (rms), and of early-F and mid-to-late M stars to within 77-106K (rms).
- ID:
- ivo://CDS.VizieR/J/ApJ/879/105
- Title:
- Effective temperatures of low-mass stars
- Short Name:
- J/ApJ/879/105
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- High-resolution, near-infrared spectra will be the primary tool for finding and characterizing Earth-like planets around low-mass stars. Yet, the properties of exoplanets cannot be precisely determined without accurate and precise measurements of the host star. Spectra obtained with the Immersion Grating Infrared Spectrometer simultaneously provide diagnostics for most stellar parameters, but the first step in any analysis is the determination of the effective temperature. Here we report the calibration of high-resolution H-band spectra to accurately determine the effective temperature for stars between 4000 and 3000K (~K8-M5) using absorption line-depths of FeI, OH, and Al I. The field star sample used here contains 254 K and M stars with temperatures derived using BT-Settl synthetic spectra. We use 106 stars with precise temperatures in the literature to calibrate our method, with typical errors of about 140K, and systematic uncertainties less than ~120K. For the broadest applicability, we present Teff-line-depth-ratio relationships, which we test on 12 members of the TW Hydrae Association and at spectral resolving powers between ~10000 and 120000. These ratios offer a simple but accurate measure of effective temperatures in cool stars that are distance and reddening independent.
- ID:
- ivo://CDS.VizieR/J/AJ/155/68
- Title:
- Elemental abundances of KOIs in APOGEE. I.
- Short Name:
- J/AJ/155/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed ~600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with >=18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically >=100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars - the primary Kepler host stellar type - by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P<100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, P_crit_=8.3_-4.1_^+0.1^ days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host T_eff_ and orbital period to support such a claim.
- ID:
- ivo://CDS.VizieR/J/ApJ/804/64
- Title:
- Empirical and model parameters of 183 M dwarfs
- Short Name:
- J/ApJ/804/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Precise and accurate parameters for late-type (late K and M) dwarf stars are important for characterization of any orbiting planets, but such determinations have been hampered by these stars' complex spectra and dissimilarity to the Sun. We exploit an empirically calibrated method to estimate spectroscopic effective temperature (T_eff_) and the Stefan-Boltzmann law to determine radii of 183 nearby K7-M7 single stars with a precision of 2%-5%. Our improved stellar parameters enable us to develop model-independent relations between T_eff_ or absolute magnitude and radius, as well as between color and T_eff_. The derived T_eff_-radius relation depends strongly on [Fe/H], as predicted by theory. The relation between absolute K_S_magnitude and radius can predict radii accurate to ~=3%. We derive bolometric corrections to the VR_C_I_C_grizJHK_S_ and Gaia passbands as a function of color, accurate to 1%-3%. We confront the reliability of predictions from Dartmouth stellar evolution models using a Markov chain Monte Carlo to find the values of unobservable model parameters (mass, age) that best reproduce the observed effective temperature and bolometric flux while satisfying constraints on distance and metallicity as Bayesian priors. With the inferred masses we derive a semi-empirical mass-absolute magnitude relation with a scatter of 2% in mass. The best-agreement models overpredict stellar T_eff_ values by an average of 2.2% and underpredict stellar radii by 4.6%, similar to differences with values from low-mass eclipsing binaries. These differences are not correlated with metallicity, mass, or indicators of activity, suggesting issues with the underlying model assumptions, e.g., opacities or convective mixing length.
- ID:
- ivo://CDS.VizieR/J/AJ/157/167
- Title:
- Equivalent widths for RSGs in the MW & LMC/SMC
- Short Name:
- J/AJ/157/167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Red supergiants (RSGs) are evolved massive stars that represent extremes, in both their physical sizes and their cool temperatures, of the massive star population. The effective temperature (T_eff_) is the most critical physical property needed to place an RSG on the Hertzsprung-Russell Diagram, due to the stars' cool temperatures and resulting large bolometric corrections. Several recent papers have examined the potential utility of atomic line equivalent widths (EWs) in cool supergiant (CSG) spectra for determining T_eff_ and other physical properties and found strong correlations between Ti I and Fe I spectral features and T_eff_ in earlier-type CSGs (G and early K) but poor correlations in M-type stars, a spectral subtype that makes up a significant fraction of RSGs. We have extended this work by measuring the EWs of Ti, Fe, and Ca lines in late K- and M-type RSGs in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud, and compared these results to the predictions of the theoretical stellar LTE atmosphere models (MARCS) stellar atmosphere models. Our analyses show a poor correlation between T_eff_ and the Fe I and Ti I lines in our observations (at odds with strong correlations predicted by stellar atmosphere models), but do find statistically significant correlations between T_eff_ and the Ca II triplet (CaT) features of Milky Way RSGs, suggesting that this could be a potential diagnostic tool for determining T_eff_ in M-type supergiants. We also examine correlations between these spectral features and other physical properties of RSGs (including metallicity, surface gravity, and bolometric magnitude), and consider the underlying physics driving the evolution of atomic line spectra in RSGs.
- ID:
- ivo://CDS.VizieR/J/ApJ/769/57
- Title:
- Equivalent widths of metal-poor stars
- Short Name:
- J/ApJ/769/57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It is well established that stellar effective temperatures determined from photometry and spectroscopy yield systematically different results. We describe a new, simple method to correct spectroscopically derived temperatures ("excitation temperatures") of metal-poor stars based on a literature sample with -3.3<[Fe/H]<-2.5. Excitation temperatures were determined from Fe I line abundances in high-resolution optical spectra in the wavelength range of ~3700-7000{AA}, although shorter wavelength ranges, up to 4750-6800{AA}, can also be employed, and compared with photometric literature temperatures. Our adjustment scheme increases the temperatures up to several hundred degrees for cool red giants, while leaving the near-main-sequence stars mostly unchanged. Hence, it brings the excitation temperatures in good agreement with photometrically derived values. The modified temperature also influences other stellar parameters, as the Fe I-Fe II ionization balance is simultaneously used to determine the surface gravity, while also forcing no abundance trend on the absorption line strengths to obtain the microturbulent velocity. As a result of increasing the temperature, the often too low gravities and too high microturbulent velocities in red giants become higher and lower, respectively. Our adjustment scheme thus continues to build on the advantage of deriving temperatures from spectroscopy alone, independent of reddening, while at the same time producing stellar chemical abundances that are more straightforwardly comparable to studies based on photometrically derived temperatures. Hence, our method may prove beneficial for comparing different studies in the literature as well as the many high-resolution stellar spectroscopic surveys that are or will be carried out in the next few years.