- ID:
- ivo://CDS.VizieR/J/AJ/154/155
- Title:
- Abundance variations in the outer halo GC NGC 6229
- Short Name:
- J/AJ/154/155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R~38000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -138.1_-1.0_^+1.0^ km/s, a small dispersion of 3.8_-0.7_^+1.0^ km/s, and a relatively low (M/L_V_)_{sun}_=0.82_-0.28_^+0.49^. The cluster is moderately metal-poor with <[Fe/H]>=-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La,Nd/Fe] ratios that are correlated with a small (~0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of {omega} Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na,Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/150/17
- Title:
- A catalog of point sources toward NGC 1333
- Short Name:
- J/AJ/150/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I present a catalog of point-source objects toward NGC 1333, resolving a wide variety of confusion about source names (and occasionally positions) in the literature. I incorporate data from optical to radio wavelengths, but focus most of the effort on being complete and accurate from J (1.25{mu}m) to 24{mu}m. The catalog encompasses 52^{deg}^<R.A.<52.5{deg} and 31{deg}<decl.<31.6{deg}. Cross-identifications include those from more than 25 papers and catalogs from 1994 to 2014, primarily those in wide use as origins of nomenclature. Gaps in our knowledge are identified, with the most important being a lack of spectroscopy for spectral types or even confirmation of youth and/or cluster membership. I fit a slope to the spectral energy distribution (SED) between 2 and 24{mu}m for the members (and candidate members) to obtain an SED classification, and I compare the resulting classes to those for the same sources in the literature, and for an SED fit between 2 and 8{mu}m. While there are certainly differences, for the majority of the sources, there is good agreement.
- ID:
- ivo://CDS.VizieR/J/A+A/579/A66
- Title:
- Accretion in {rho}-Ophiucus
- Short Name:
- J/A+A/579/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new VLT/X-Shooter optical and near-infrared spectra of a sample of 17 candidate young low-mass stars and brown dwarfs located in the {rho}-Ophiucus cluster. We derived the spectral type and extinction for all the targets, and then we determined their physical parameters. All the objects but one have M_*_<~0.6M_{sun}_, and eight have mass below or close to the hydrogen-burning limit. Using the intensity of various permitted emission lines present in their spectra, we determined the accretion luminosity and mass accretion rates ({dot}(M)_acc_) for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions, such as Lupus, to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of {dot}(M)_acc_ with M_*_ when comparing low-mass stars and brown dwarfs. Moreover, we find a similar small (<~1dex) scatter in the {dot}(M)_acc_-M_*_ relation as in some of our recent works in other star-forming regions, and no significant differences in {dot}(M)_acc_ due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the {dot}(M)_acc_-M_*_ correlation confirms that mass accretion rate measurements in the literature based on uncertain photospheric parameters and single accretion indicators, such as the H{alpha} width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates in star-forming regions.
- ID:
- ivo://CDS.VizieR/J/AJ/149/68
- Title:
- A-F type variable stars from Kepler
- Short Name:
- J/AJ/149/68
- Date:
- 03 Dec 2021 00:36:02
- Publisher:
- CDS
- Description:
- The light curves of 2768 stars with effective temperatures and surface gravities placing them near the gamma Doradus ({gamma} Dor)/delta Scuti ({delta} Sct) instability region were observed as part of the Kepler Guest Observer program from Cycles 1 through 5. The light curves were analyzed in a uniform manner to search for {gamma} Dor, {delta} Sct, and hybrid star pulsations. The {gamma} Dor, {delta} Sct, and hybrid star pulsations extend asteroseismology to stars slightly more massive (1.4-2.5M_{sun}_) than our Sun. We find 207 {gamma} Dor, 84 {delta} Sct, and 32 hybrid candidate stars. Many of these stars are cooler than the red edge of the {gamma} Dor instability strip as determined from ground-based observations made before Kepler. A few of our {gamma} Dor candidate stars lie on the hot side of the ground-based {gamma} Dor instability strip. The hybrid candidate stars cover the entire region between 6200K and the blue edge of the ground-based {delta} Sct instability strip. None of our candidate stars are hotter than the hot edge of the ground-based {delta} Sct instability strip. Our discoveries, coupled with the work of others, show that Kepler has discovered over 2000 {gamma} Dor, {delta} Sct, and hybrid star candidates in the 116 square degree Kepler field of view. We found relatively few variable stars fainter than magnitude 15, which may be because they are far enough away to lie between spiral arms in our Galaxy, where there would be fewer stars.
- ID:
- ivo://CDS.VizieR/J/A+A/377/911
- Title:
- Age-metallicity relation in solar neighbourhood
- Short Name:
- J/A+A/377/911
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive stellar ages, from evolutionary tracks, and metallicities, from Stroemgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos (Cat. <I/239>) Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. (1993, Cat. <J/A+A/275/101>) sample by Garnett & Kobulnicky (2000ApJ...532.1192G) is an expected artifact due to the construction of the original sample. We conclude that, although some of it can be attributed to stellar migration in the galactic disk, a large part of the observed scatter is intrinsic to the formation processes of stars.
- ID:
- ivo://CDS.VizieR/J/AJ/161/100
- Title:
- Ages and alpha-abundances of population in K2
- Short Name:
- J/AJ/161/100
- Date:
- 19 Jan 2022 13:30:38
- Publisher:
- CDS
- Description:
- We explore the relationships between the chemistry, ages, and locations of stars in the Galaxy using asteroseismic data from the K2 mission and spectroscopic data from the Apache Point Galactic Evolution Experiment survey. Previous studies have used giant stars in the Kepler field to map the relationship between the chemical composition and the ages of stars at the solar circle. Consistent with prior work, we find that stars with high [{alpha}/Fe] have distinct, older ages in comparison to stars with low [{alpha}/Fe]. We provide age estimates for red giant branch (RGB) stars in the Kepler field, which support and build upon previous age estimates by taking into account the effect of {alpha}-enrichment on opacity. Including this effect for [{alpha}/Fe]-rich stars results in up to 10% older ages for low- mass stars relative to corrected solar mixture calculations. This is a significant effect that Galactic archeology studies should take into account. Looking beyond the Kepler field, we estimate ages for 735 RGB stars from the K2 mission, mapping age trends as a function of the line of sight. We find that the age distributions for low- and high-[{alpha}/Fe] stars converge with increasing distance from the Galactic plane, in agreement with suggestions from earlier work. We find that K2 stars with high [{alpha}/Fe] appear to be younger than their counterparts in the Kepler field, overlapping more significantly with a similarly aged low-[{alpha}/Fe] population. This observation may suggest that star formation or radial migration proceeds unevenly in the Galaxy.
- ID:
- ivo://CDS.VizieR/J/ApJ/868/32
- Title:
- A large moving group within the LCC association
- Short Name:
- J/ApJ/868/32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Scorpius-Centaurus is the nearest OB association, and its hundreds of members are divided into subgroups, including the Lower Centaurus Crux (LCC). Here we study the dynamics of the LCC area. We report the revelation of a large moving group containing more than 1800 intermediate- and low-mass young stellar objects and brown dwarfs that escaped identification until Gaia DR2 allowed a kinematic and photometric selection to be performed. We investigate the stellar and substellar content of this moving group using the Gaia DR2 astrometric and photometric measurements. The median distance of the members is 114.5pc, and 80% lie between 102 and 135pc from the Sun. Our new members cover a mass range of 0.02-5M_{sun}_ and add up to a total mass of about 700M_{sun}_. The present-day mass function follows a log-normal law with m_c_=0.22M_{sun}_ and {sigma}=0.64. We find more than 200 brown dwarfs in our sample. The star formation rate had its maximum of 8x10^-5^M_{sun}_/yr about 9Myr ago. We grouped the new members into four denser subgroups, which have increasing age from 7 to 10Myr, surrounded by "free-floating" young stars with mixed ages. Our isochronal ages, now based on accurate parallaxes, are compatible with several earlier studies of the region. The whole complex is presently expanding, and the expansion started between 8 and 10Myr ago. Two hundred members show infrared excess compatible with circumstellar disks from full to debris disks. This discovery provides a large sample of nearby young stellar and substellar objects for disk and exoplanet studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/77
- Title:
- A library of high-S/N optical spectra of FGKM stars
- Short Name:
- J/ApJ/836/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (T_eff_~3000-7000K, R_*_~0.1-16R_{Sun}_). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (T_eff_), 15% in stellar radius (R_*_), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in T_eff_, 10% in R_*_, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.
- ID:
- ivo://CDS.VizieR/J/ApJ/895/126
- Title:
- ALMA observation of 152 1-11Myr aged stars
- Short Name:
- J/ApJ/895/126
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- We utilize ALMA archival data to estimate the dust disk size of 152 protoplanetary disks in Lupus (1-3Myr), Chamaeleon I (2-3Myr), and Upper-Sco (5-11Myr). We combine our sample with 47 disks from Tau/Aur and Oph whose dust disk radii were estimated, as here, through fitting radial profile models to visibility data. We use these 199 homogeneously derived disk sizes to identify empirical disk-disk and disk-host property relations as well as to search for evolutionary trends. In agreement with previous studies, we find that dust disk sizes and millimeter luminosities are correlated, but show for the first time that the relationship is not universal between regions. We find that disks in the 2-3Myr old ChaI are not smaller than disks in other regions of similar age, and confirm the Barenfeld et al. finding that the 5-10Myr USco disks are smaller than disks belonging to younger regions. Finally, we find that the outer edge of the solar system, as defined by the Kuiper Belt, is consistent with a population of dust disk sizes which have not experienced significant truncation.
- ID:
- ivo://CDS.VizieR/J/ApJ/827/142
- Title:
- ALMA observations of GKM stars in Upper Sco
- Short Name:
- J/ApJ/827/142
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ALMA observations of 106 G-, K-, and M-type stars in the Upper Scorpius OB Association hosting circumstellar disks. With these data, we measure the 0.88mm continuum and ^12^CO J=3-2 line fluxes of disks around low-mass (0.14-1.66M_{sun}_) stars at an age of 5-11Myr. Of the 75 primordial disks in the sample, 53 are detected in the dust continuum and 26 in CO. Of the 31 disks classified as debris/evolved transitional disks, five are detected in the continuum and none in CO. The lack of CO emission in approximately half of the disks with detected continuum emission can be explained if CO is optically thick but has a compact emitting area (<~40au), or if the CO is heavily depleted by a factor of at least ~1000 relative to interstellar medium abundances and is optically thin. The continuum measurements are used to estimate the dust mass of the disks. We find a correlation between disk dust mass and stellar host mass consistent with a power-law relation of M_dust_{propto}M_*_^1.67+/-0.37^. Disk dust masses in Upper Sco are compared to those measured in the younger Taurus star-forming region to constrain the evolution of disk dust mass. We find that the difference in the mean of log(M_dust_/M*) between Taurus and Upper Sco is 0.64+/-0.09, such that M_dust_/M* is lower in Upper Sco by a factor of ~4.5.