- ID:
- ivo://CDS.VizieR/J/AJ/157/113
- Title:
- TESS M-dwarf exoplanetary systems
- Short Name:
- J/AJ/157/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the M-dwarf exoplanetary systems forthcoming from NASA's TESS mission. While the mission's footprint is too complex to be characterized by a single detection completeness, we extract ensemble completeness functions that recover the planet detections from previous work for stars between 3200 and 4000 K. We employ these completeness functions, together with a dual- population planet occurrence model that includes compact multiple planetary systems, to infer anew the planet yield. We predict both the number of M-dwarf planets likely from TESS and their system architectures. We report four main findings. First, TESS will likely detect more planets orbiting M dwarfs that previously predicted. Around stars with effective temperatures between 3200 and 4000 K, we predict that TESS will find 1274+/-241 planets orbiting 1026+/-182 stars, a 1.2-fold increase over previous predictions. Second, TESS will find two or more transiting planets around 20% of these host stars, a number similar to the multiplicity yield of NASA's Kepler mission. Third, TESS light curves in which one or more planets are detected will often contain transits of additional planets below the detection threshold of TESS. Among a typical set of 200 TESS hosts to one or more detected planets, 93+/-17 transiting planets will be missed. Transit follow-up efforts with the photometric sensitivity to detect an Earth or larger around a mid-M dwarf, even with very modest period completeness, will readily result in additional planet discoveries. Fourth, the strong preference of TESS for systems of compact multiples indicates that TESS planets will be dynamically cooler on average than Kepler planets, with 90% of TESS planets residing in orbits with e<0.15. We include both (1) a predicted sample of planets detected by TESS orbiting stars between 3200 and 4000 K, including additional nontransiting planets, or transiting and undetected planets orbiting the same star and (2) sample completeness functions for use by the community.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/151/82
- Title:
- The 4 brightest red giants in the UFD galaxy Ret 2
- Short Name:
- J/AJ/151/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ultra-faint dwarf (UFD) galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey (Diehl et al. 2014SPIE.9149E..0VD). We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We present detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe]=+1.69+/-0.05) found in three of these stars (mean [Fe/H]=-2.88+/-0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS 22892-052. Such r-process-enhanced stars have not been found in any other UFD galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H]=-3.42+/-0.20) contains only trace amounts of Sr ([Sr/Fe]=-1.73+/-0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe]~+1.1). This is only the third such star known, which suggests that the nucleosynthesis sites leading to C and r-process enhancements are decoupled. The r-process-deficient star is enhanced in Mg ([Mg/Fe]=+0.81+/-0.14), and the other three stars show normal levels of {alpha}-enhancement (mean [Mg/Fe]=+0.34+/-0.03). The abundances of other {alpha} and Fe-group elements closely resemble those in UFD galaxies and metal-poor halo stars, suggesting that the nucleosynthesis that led to the large r-process enhancements either produced no light elements or produced light-element abundance signatures indistinguishable from normal supernovae.
- ID:
- ivo://CDS.VizieR/V/152
- Title:
- The DEBCat detached eclipsing binary catalogue
- Short Name:
- V/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detached eclipsing binary star systems are our primary source of measured physical properties of normal stars. I introduce DEBCat: a catalog of detached eclipsing binaries with mass and radius measurements to the 2% precision necessary to put useful constraints on theoretical models of stellar evolution. The catalog was begun in 2006, as an update of the compilation by Andersen (1991A&ARv...3...91A). It now contains over 195 systems (2017/10/10), and new results are added on appearance in the refereed literature.
- ID:
- ivo://CDS.VizieR/J/AJ/157/177
- Title:
- The evolutionary status of GK subgiants
- Short Name:
- J/AJ/157/177
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Snowden & Young (2005ApJS..157..126S) suggested that the reason why there are GK subgiants is because they are members of binaries, which would bring them above the main sequence in an Hertzsprung-Russell (HR) diagram. They studied a sample of 30 G0-K1 IV stars and were disappointed to find only two to be spectroscopic binaries. With more accurate radial velocities I found seven binaries in their samples of subgiants and control stars; orbital elements are given for those seven. Using Hipparcos parallaxes and SIMBAD data, I found that nearly all of the G0-K1 IV stars fall on the evolutionary tracks by Girardi et al. (2000, J/A+AS/141/371) for Population I stars with masses of 0.9-1.9 M_{sun}_ and ages of up to 10^10^ yr, which are normal parameters for nearby field stars. Therefore there is no problem regarding the existence of GK subgiants.
- ID:
- ivo://CDS.VizieR/J/AJ/155/116
- Title:
- The globular cluster M14.II. Variable stars
- Short Name:
- J/AJ/155/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ~137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006-2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive <P_ab_>=0.589 days. This, together with the position of the RR Lyrae stars of both Bailey types in the period-amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster.
536. The PASTEL catalogue
- ID:
- ivo://CDS.VizieR/B/pastel
- Title:
- The PASTEL catalogue
- Short Name:
- B/pastel
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- PASTEL is a bibliographical catalogue compiling determinations of stellar atmospheric parameters. It provides (Teff, logg, [Fe/H]) determinations obtained from detailed analyses of high resolution, high signal to noise spectra, carried out with the help of model atmospheres. It also provides effective temperatures Teff from various methods. PASTEL is regularly updated. The catalogue supersedes the two previous versions of the [Fe/H] catalogue (Cayrel de Strobel et al., 1997 [Cat. III/200], 2001 [Cat. III/221]). PASTEL is regularly updated.
- ID:
- ivo://CDS.VizieR/J/AJ/161/233
- Title:
- The revised TESS habitable zone catalog
- Short Name:
- J/AJ/161/233
- Date:
- 20 Jan 2022
- Publisher:
- CDS
- Description:
- In the search for life in the cosmos, NASA's Transiting Exoplanet Survey Satellite (TESS) mission has already monitored about 74% of the sky for transiting extrasolar planets, including potentially habitable worlds. However, TESS only observed a fraction of the stars long enough to be able to find planets like Earth. We use the primary mission data-the first two years of observations-and identify 4239 stars within 210pc that TESS observed long enough to see three transits of an exoplanet that receives similar irradiation to Earth: 738 of these stars are located within 30pc. We provide reliable stellar parameters from the TESS Input Catalog that incorporates Gaia DR2 and also calculate the transit depth and radial velocity semiamplitude for an Earth-analog planet. Of the 4239 stars in the Revised TESS HZ Catalog, 9 are known exoplanet hosts-GJ1061, GJ1132, GJ3512, GJ685, Kepler-42, LHS1815, L98-59, RRCae, and TOI700-around which TESS could identify additional Earth-like planetary companions. Thirty-seven additional stars host yet unconfirmed TESS Objects of Interest: three of these orbit in the habitable-zone TOI203, TOI715, and TOI2298. For a subset of 614 of the 4239 stars, TESS has observed the star long enough to be able to observe planets throughout the full temperate, habitable zone out to the equivalent of Mars orbit. Thus, the Revised TESS Habitable Zone Catalog provides a tool for observers to prioritize stars for follow-up observation to discover life in the cosmos. These stars are the best path toward the discovery of habitable planets using the TESS mission data.
- ID:
- ivo://CDS.VizieR/J/AJ/155/38
- Title:
- The rotation of M dwarfs observed by APOGEE
- Short Name:
- J/AJ/155/38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v sin i while simultaneously estimating log g, [M/H], and T_eff_. We conservatively estimate that our detection limit is 8 km/s. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v sin i and rotation period are physically inconsistent, requiring sin i>1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ~2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.
- ID:
- ivo://CDS.VizieR/J/A+A/648/A65
- Title:
- The sHRD of OB stars in NGC 2070
- Short Name:
- J/A+A/648/A65
- Date:
- 06 Dec 2021 13:26:57
- Publisher:
- CDS
- Description:
- We present the spectroscopic analysis of 333 OB-type stars extracted from VLT-MUSE observations of the central 30x30pc of NGC 2070 in the Tarantula Nebula on the Large Magellanic Cloud, the majority of which are analysed for the first time. The distribution of stars in the spectroscopic Hertzsprung-Russell diagram (sHRD) shows 281 stars in the main sequence. We find two groups in the main sequence, with estimated ages of 2.1+/-0.8 and 6.2+/-2Myr. A subgroup of 52 stars is apparently beyond the main sequence phase, which we consider to be due to emission-type objects and/or significant nebular contamination affecting the analysis. As in previous studies, stellar masses derived from the sHRD are systematically larger than those obtained from the conventional HRD, with the differences being largest for the most massive stars. Additionally, we do not find any trend between the estimated projected rotational velocity and evolution in the sHRD. The projected rotational velocity distribution presents a tail of fast rotators that resembles findings in the wider population of 30 Doradus. We use published spectral types to calibrate the HeI{lambda}4921/HeII{lambda}5411 equivalent-width ratio as a classification diagnostic for early-type main sequence stars when the classical blue-visible region is not observed. Our model-atmosphere analyses demonstrate that the resulting calibration is well correlated with effective temperature.
- ID:
- ivo://CDS.VizieR/J/AJ/161/170
- Title:
- The Swan: an approach to derive surface gravity
- Short Name:
- J/AJ/161/170
- Date:
- 20 Jan 2022
- Publisher:
- CDS
- Description:
- Stellar light curves are well known to encode physical stellar properties. Precise, automated, and computationally inexpensive methods to derive physical parameters from light curves are needed to cope with the large influx of these data from space-based missions such as Kepler and TESS. Here we present a new methodology that we call "The Swan", a fast, generalizable, and effective approach for deriving stellar surface gravity (logg) for main-sequence, subgiant, and red giant stars from Kepler light curves using local linear regression on the full frequency content of Kepler long-cadence power spectra. With this inexpensive data-driven approach, we recover logg to a precision of ~0.02dex for 13822 stars with seismic logg values between 0.2 and 4.4dex and ~0.11dex for 4646 stars with Gaia-derived logg values between 2.3 and 4.6dex. We further develop a signal-to-noise metric and find that granulation is difficult to detect in many cool main-sequence stars (Teff<~5500K), in particular K dwarfs. By combining our logg measurements with Gaia radii, we derive empirical masses for 4646 subgiant and main-sequence stars with a median precision of ~7%. Finally, we demonstrate that our method can be used to recover logg to a similar mean absolute deviation precision for a TESS baseline of 27days. Our methodology can be readily applied to photometric time series observations to infer stellar surface gravities to high precision across evolutionary states.