- ID:
- ivo://CDS.VizieR/J/AJ/162/100
- Title:
- PAST. II. LAMOST-Gaia-Kepler catalog of 35835 stars
- Short Name:
- J/AJ/162/100
- Date:
- 14 Mar 2022 06:40:51
- Publisher:
- CDS
- Description:
- The Kepler telescope has discovered over 4000 planets (candidates) by searching ~200000 stars over a wide range of distance (order of kpc) in our Galaxy. Characterizing the kinematic properties (e.g., Galactic component membership and kinematic age) of these Kepler targets (including the planet candidate hosts) is the first step toward studying Kepler planets in the Galactic context, which will reveal fresh insights into planet formation and evolution. In this paper, the second part of the Planets Across the Space and Time (PAST) series, by combining the data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and Gaia and then applying the revised kinematic methods from PAST I, we present a catalog of kinematic properties (i.e., Galactic positions, velocities, and the relative membership probabilities among the thin disk, thick disk, Hercules stream, and the halo) as well as other basic stellar parameters for 35835 Kepler stars. Further analyses of the LAMOST-Gaia-Kepler catalog demonstrate that our derived kinematic age reveals the expected stellar activity-age trend. Furthermore, we find that the fraction of thin (thick) disk stars increases (decreases) with the transiting planet multiplicity (N_p_=0,1,2 and3+) and the kinematic age decreases with N_p_, which could be a consequence of the dynamical evolution of planetary architecture with age. The LAMOST-Gaia-Kepler catalog will be useful for future studies on the correlations between the exoplanet distributions and the stellar Galactic environments as well as ages.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/632/A25
- Title:
- PDS70 VLT/SPHERE images
- Short Name:
- J/A+A/632/A25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- PDS 70 is a young (5.4Myr), nearby (~113pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS70b, within the disk cavity. Moreover, observations in H{alpha} with MagAO and MUSE revealed emission associated to PDS 70 b and to another new companion candidate, PDS70c, at a larger separation from the star. PDS 70 is the only multiple planetary system at its formation stage detected so far through direct imaging. Our aim is to confirm the discovery of the second planet PDS 70 c using SPHERE at VLT, to further characterize its physical properties, and search for additional point sources in this young planetary system. Methods. We re-analyzed archival SPHERE NIR observations and obtained new data in Y, J, H and K spectral bands for a total of four different epochs. The data were reduced using the data reduction and handling pipeline and the SPHERE data center. We then applied custom routines (e.g. ANDROMEDA and PACO) to subtract the starlight. We re-detect both PDS 70 b and c and confirm that PDS70c is gravitationally bound to the star. We estimate this second planet to be less massive than 5M_Jup_ and with a Teff around 900K. Also, it has a low gravity with log g between 3.0 and 3.5dex. In addition, a third object has been identified at short separation (~0.12") from the star and gravitationally bound to the star. Its spectrum is however very blue, so that we are probably seeing stellar light reflected by dust and our analysis seems to demonstrate that it is a feature of the inner disk. We, however, cannot completely exclude the possibility that it is a planetary mass object enshrouded by a dust envelope. In this latter case, its mass should be of the order of few tens of M_{Earth}_. Moreover, we propose a possible structure for the planetary system based on our data that, however, cannot be stable on a long timescale.
- ID:
- ivo://CDS.VizieR/J/AJ/161/82
- Title:
- Photometric & spectroscopic obs. of TOI-954 and K2-329
- Short Name:
- J/AJ/161/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of two short-period Saturn-mass planets, one transiting the G subgiant TOI-954 (TIC44792534, V=10.343, T=9.78) observed in TESS sectors 4 and 5 and one transiting the G dwarf K2-329 (EPIC246193072, V=12.70, K=10.67) observed in K2 campaigns 12 and 19. We confirm and characterize these two planets with a variety of ground-based archival and follow-up observations, including photometry, reconnaissance spectroscopy, precise radial velocity, and high-resolution imaging. Combining all available data, we find that TOI-954b has a radius of 0.852_-0.062_^+0.053^R_Jup_ and a mass of 0.174_-0.017_^+0.018^M_Jup_ and is in a 3.68day orbit, while K2-329b has a radius of 0.774_-0.024_^+0.026^R_Jup_ and a mass of 0.260_-0.022_^+0.020^M_Jup_ and is in a 12.46day orbit. As TOI-954b is 30 times more irradiated than K2-329b but more or less the same size, these two planets provide an opportunity to test whether irradiation leads to inflation of Saturn-mass planets and contribute to future comparative studies that explore Saturn-mass planets at contrasting points in their lifetimes.
- ID:
- ivo://CDS.VizieR/J/AJ/159/173
- Title:
- Photometry & RVs of 4 dwarfs hosting giant planets
- Short Name:
- J/AJ/159/173
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting giant planets around K-dwarfs. The planets HATS-47b, HATS-48Ab, HATS-49b, and HATS-72b have masses of 0.369_-0.021_^+0.031^M_J_, 0.243_-0.030_^+0.022^M_J_, 0.353_-0.027_^+0.038^M_J_, and 0.1254{+/-}0.0039M_J_, respectively, and radii of 1.117{+/-}0.014R_J_, 0.800{+/-}0.015R_J_, 0.765{+/-}0.013R_J_, and 0.7224{+/-}0.0032R_J_, respectively. The planets orbit close to their host stars with orbital periods of 3.9228days, 3.1317days, 4.1480days, and 7.3279days, respectively. The hosts are main-sequence K-dwarfs with masses of 0.674_-0.012_^+0.016^M_{odot}_, 0.7279{+/-}0.0066M_{odot}_, 0.7133{+/-}0.0075M_{odot}_, and 0.7311{+/-}0.0028, and with V-band magnitudes of V=14.829{+/-}0.010, 14.35{+/-}0.11, 14.998{+/-}0.040 and 12.469{+/-}0.010. The super-Neptune HATS-72b (a.k.a. WASP-191b and TOI294.01) was independently identified as a transiting planet candidate by the HATSouth, WASP, and TESS surveys, and we present a combined analysis of all of the data gathered by each of these projects (and their follow-up programs). An exceptionally precise mass is measured for HATS-72b thanks to high-precision radial velocity (RV) measurements obtained with VLT/ESPRESSO, FEROS, HARPS, and Magellan/PFS. We also incorporate TESS observations of the warm Saturn-hosting systems HATS-47 (a.k.a. TOI1073.01), HATS-48A, and HATS-49. HATS-47 was independently identified as a candidate by the TESS team, while the other two systems were not previously identified from the TESS data. The RV orbital variations are measured for these systems using Magellan/PFS. HATS-48A has a resolved 5.4" neighbor in Gaia DR2, which is a common-proper-motion binary star companion to HATS-48A with a mass of 0.22M_{odot}_ and a current projected physical separation of ~1400au.
- ID:
- ivo://CDS.VizieR/J/ApJS/244/11
- Title:
- Planet candidates and EBs in K2 campaigns 0-8
- Short Name:
- J/ApJS/244/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We implement a search for exoplanets in campaigns zero through eight (C0-8) of the K2 extension of the Kepler spacecraft. We apply a modified version of the Quasi-periodic Automated Transit Search (QATS) planet search algorithm to K2 light curves produced by the EVEREST pipeline, carrying out the C0-8 search on 1.5x10^5^ target stars with magnitudes in the range of Kp=9-15. We detect 818 transiting planet candidates, of which 374 were undiscovered by prior searches, with {64, 15, 5, 2, 1} in {2, 3, 4, 5, 6}-planet multiplanet candidate systems, respectively. Of the new planets detected, 100 orbit M dwarfs, including one that is potentially rocky and in the habitable zone. A total of 154 of our candidates reciprocally transit with our solar system: they are geometrically aligned to see at least one solar system planet transit. We find candidates that display transit timing variations and dozens of candidates on both period extremes with single transits or ultrashort periods. We point to evidence that our candidates display similar patterns in frequency and size-period relation to confirmed planets, such as tentative evidence for the radius gap. Confirmation of these planet candidates with follow-up studies will increase the number of K2 planets by up to 50%, and characterization of their host stars will improve statistical studies of planet properties. Our sample includes many planets orbiting bright stars amenable for radial velocity follow-up and future characterization with JWST. We also list the 579 eclipsing binary systems detected as part of this search.
- ID:
- ivo://CDS.VizieR/J/AJ/155/21
- Title:
- Planet candidates from K2 campaigns 5-8
- Short Name:
- J/AJ/155/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 151 planet candidates orbiting 141 stars from K2 campaigns 5-8 (C5-C8), identified through a systematic search of K2 photometry. In addition, we identify 16 targets as likely eclipsing binaries, based on their light curve morphology. We obtained follow-up optical spectra of 105/141 candidate host stars and 8/16 eclipsing binaries to improve stellar properties and to identify spectroscopic binaries. Importantly, spectroscopy enables measurements of host star radii with ~10% precision, compared to ~40% precision when only broadband photometry is available. The improved stellar radii enable improved planet radii. Our curated catalog of planet candidates provides a starting point for future efforts to confirm and characterize K2 discoveries.
- ID:
- ivo://CDS.VizieR/J/MNRAS/465/2734
- Title:
- Planet-hosting solar-type stars magnetic fields
- Short Name:
- J/MNRAS/465/2734
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|B_l_|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.
- ID:
- ivo://CDS.VizieR/J/MNRAS/496/5423
- Title:
- 4 planet-hosting stars asteroseismic masses
- Short Name:
- J/MNRAS/496/5423
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The study of planet occurrence as a function of stellar mass is important for a better understanding of planet formation. Estimating stellar mass, especially in the red giant regime, is difficult. In particular, stellar masses of a sample of evolved planet-hosting stars based on spectroscopy and grid-based modelling have been put to question over the past decade with claims they were overestimated. Although efforts have been made in the past to reconcile this dispute using asteroseismology, results were inconclusive. In an attempt to resolve this controversy, we study four more evolved planet-hosting stars in this paper using asteroseismology, and we revisit previous results to make an informed study of the whole ensemble in a self-consistent way. For the four new stars, we measure their masses by locating their characteristic oscillation frequency, numax, from their radial velocity time series observed by SONG. For two stars, we are also able to measure the large frequency separation, Delta nu, helped by extended SONG single-site and dual-site observations and new TESS observations. We establish the robustness of the numax-only-based results by determining the stellar mass from Delta nu, and from both Delta nu and numax. We then compare the seismic masses of the full ensemble of 16 stars with the spectroscopic masses from three different literature sources. We find an offset between the seismic and spectroscopic mass scales that is mass-dependent, suggesting that the previously claimed overestimation of spectroscopic masses only affects stars more massive than about 1.6M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/MNRAS/495/3961
- Title:
- Planet-hosting stars chemical compositions
- Short Name:
- J/MNRAS/495/3961
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a line-by-line differential analysis of a sample of 16 planet-hosting stars and 68 comparison stars using high-resolution, high signal-to-noise ratio spectra gathered using Keck. We obtained accurate stellar parameters and high-precision relative chemical abundances with average uncertainties in Teff, logg, [Fe/H], and [X/H] of 15K, 0.034cm/s^2^, 0.012dex, and 0.025dex, respectively. For each planet host, we identify a set of comparison stars and examine the abundance differences (corrected for Galactic chemical evolution effect) as a function of the dust condensation temperature, Tcond, of the individual elements. While we confirm that the Sun exhibits a negative trend between abundance and Tcond, we also confirm that the remaining planet hosts exhibit a variety of abundance-Tcond trends with no clear dependence upon age, metallicity, or Teff. The diversity in the chemical compositions of planet-hosting stars relative to their comparison stars could reflect the range of possible planet-induced effects present in these planet hosts, from the sequestration of rocky material (refractory poor) to the possible ingestion of planets (refractory rich). Other possible explanations include differences in the time-scale, efficiency and degree of planet formation, or inhomogeneous chemical evolution. Although we do not find an unambiguous chemical signature of planet formation among our sample, the high-precision chemical abundances of the host stars are essential for constraining the composition and structure of their exoplanets.
- ID:
- ivo://CDS.VizieR/J/AJ/153/136
- Title:
- Planets and their host stars with Gaia parallaxes
- Short Name:
- J/AJ/153/136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present empirical measurements of the radii of 116 stars that host transiting planets. These radii are determined using only direct observables - the bolometric flux at Earth, the effective temperature, and the parallax provided by the Gaia first data release - and thus are virtually model independent, with extinction being the only free parameter. We also determine each star's mass using our newly determined radius and the stellar density, a virtually model independent quantity itself from previously published transit analyses. These stellar radii and masses are in turn used to redetermine the transiting-planet radii and masses, again using only direct observables. The median uncertainties on the stellar radii and masses are 8% and 30%, respectively, and the resulting uncertainties on the planet radii and masses are 9% and 22%, respectively. These accuracies are generally larger than previously published model-dependent precisions of 5% and 6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report radii for 242 stars hosting radial-velocity (non-transiting) planets, with a median achieved accuracy of ~2%. Using our empirical stellar masses we verify that the majority of putative "retired A stars" in the sample are indeed more massive than ~1.2 M_{sun}_. Most importantly, the bolometric fluxes and angular radii reported here for a total of 498 planet host stars-with median accuracies of 1.7% and 1.8%, respectively-serve as a fundamental data set to permit the re-determination of transiting-planet radii and masses with the Gaia second data release to ~3% and ~5% accuracy, better than currently published precisions, and determined in an entirely empirical fashion.